Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Hier — 20 septembre 2025Flux principal

UniFi Launch the New UNAS 2, UNAS 4, UNAS Pro 4 and UNAS Pro 8 NAS

Par : Rob Andrews
19 septembre 2025 à 16:00

UniFi MASSIVELY Scale up their NAS Portfolio with the UNAS Pro 8, UNAS Pro 4, UNAS 4 and UNAS 2

Note, the UNAS Pro 2 is NOW LIVE on the UniFi Store . The UNAS 4, UNAS Pro 4 and UNAS Pro 8 are now in the site, but are not available till October.

Ubiquiti is preparing to significantly broaden its NAS product line in late 2025 with the introduction of four new systems under the UNAS branding. The new lineup follows the launch of the original UNAS Pro in 2024, which gained attention as a low-cost, seven-bay rackmount appliance that introduced UniFi into the NAS sector. With the release of the UNAS 2, UNAS 4, UNAS Pro 4, and UNAS Pro 8, the company is moving into what it describes as its “phase two” of NAS development, aiming to cover both desktop and rackmount form factors while integrating closely with the wider UniFi ecosystem. This expansion arrives at a time when established NAS vendors are tightening drive compatibility and raising prices, leaving a gap for alternatives that emphasise affordability, simplified deployment, and ecosystem consistency.

The UNAS Pro 8 NAS

4-Core ARM, 16GB RAM, 3x 10GbE, 8x SATA Bays, 2x M.2 Bays (trays required), Redundant PSU (2nd Sold Seperately) $799HERE

The UNAS Pro 8 will serve as the top-end model of the range, positioned in a 2U rackmount chassis and built to deliver higher capacity and redundancy. It features eight front-facing 2.5″/3.5″ SATA bays alongside two rear-mounted M.2 NVMe slots, accessible through modular trays.

The Pro 8 is powered by a quad-core ARM Cortex-A57 processor running at 1.7 GHz and paired with 16 GB of LPDDR4 memory. Unlike many entry-level ARM systems, the Pro 8 includes three 10-gigabit network interfaces: two SFP+ and one RJ45 supporting multi-gig speeds down to 100 MbE. Redundant hot-swappable 550W PSUs are supported, though only one is included by default, with seamless failover tested successfully under load.

Category Specification
Form Factor Rackmount NAS (2U)
Dimensions 442.4 x 480 x 87.4 mm (44.24 x 48.0 x 8.74 cm)
Weight 11.5 kg (25.35 lb)
Enclosure Material SGCC steel
Mounting Rack rails included
Drive Bays 8 x 2.5″/3.5″ SATA HDD/SSD
M.2 Support 2 x M.2 NVMe slots (2280/22110) via rear tray modules (sold separately)
RAID Support RAID 0, 1, 5, 6, clustered RAID, Single Disk
Hot Swap Supported
Max Drive Capacity Tested up to 30 TB HDDs; UniFi-branded and third-party drives supported
CPU Quad-Core ARM Cortex-A57, 1.7 GHz
Memory 16 GB LPDDR4 (non-upgradeable)
System Storage ~25.2 GB internal flash (likely 32 GB with over-provisioning)
Network Interfaces 2 x 10G SFP+, 1 x 10GbE RJ45 (multi-gig fallback to 5G/2.5G/1G/100M)
USB / Expansion None
Power Method Dual PSU bays, hot-swappable modules
Power Supply 2 x 550W AC/DC hot-swappable PSUs (1 included by default)
Max Power Budget 175W for drives
Max Consumption 200W
Cooling Multiple system fans with active fan control
Management UniFi OS web interface; Ethernet, Bluetooth 4.1 for setup
Software File System Btrfs with snapshot support
Certifications FCC, CE, IC; NDAA Compliant

The system uses SGCC steel for the enclosure, weighs 11.5 kg, and includes rack rails in the box, a detail rarely seen in turnkey solutions. Performance tests have demonstrated sequential reads close to 850 MB/s on HDDs in RAID 5, with expectations of saturating a 10GbE link when using SSDs or RAID 0.

The UNAS 2 NAS

4-Core ARM, 4GB RAM, 1X 2.5GbE PoE+++, 2x SATA Bays, Power Over Ethernet delivery (PoE+++ Adapter Included) $199HERE

At the opposite end of the spectrum is the UNAS 2, UniFi’s smallest NAS to date. This desktop unit measures just 13.5 x 12.9 x 22.37 cm and weighs 1.3 kg, with a polycarbonate chassis designed to keep cost and weight down.

The device supports two 3.5″ SATA drives housed in a shared tray, a design that requires both drives to be removed together and does not permit hot-swapping. This approach raises concerns about handling healthy drives during replacement but reduces the mechanical complexity of the system.

Category Specification
Form Factor Desktop NAS
Dimensions 135 x 129 x 223.7 mm (13.5 x 12.9 x 22.37 cm)
Weight 1.3 kg (2.85 lb)
Enclosure Material Polycarbonate
Drive Bays 2 x 3.5″ SATA HDD
RAID Support RAID 0, RAID 1, Single Disk
Hot Swap Not supported (shared tray for both drives)
Max Drive Capacity Confirmed support up to 30 TB HDDs
CPU Quad-Core ARM Cortex-A55, 1.7 GHz
Memory 4 GB LPDDR4 (non-upgradeable)
System Storage Internal flash for operating system
Network Interface 1 x 2.5 GbE RJ45 (PoE++ power + data)
USB Ports 1 x USB-C (5 Gbps, storage devices only)
Power Method PoE++ (via 2.5 GbE port)
Power Supply 60W PoE++ injector included
Max Power Budget 52W for drives, 60W maximum system consumption
Cooling Rear cooling fan with bottom intake vents, software fan control
Display 1.47″ colour LCM (status only, non-touch)
Noise Levels ~31–32 dBA idle, up to ~38 dBA under load
Thermal Range CPU ~75–80°C under stress, 50–60°C idle/light use
Management UniFi OS web interface, Ethernet, Bluetooth 4.1 for setup
Certifications FCC, CE, IC; NDAA Compliant

The UNAS 2 runs on a quad-core ARM Cortex-A55 at 1.7 GHz with 4 GB of LPDDR4 memory. Networking is provided by a single 2.5 GbE RJ45 port, which also delivers PoE++ power, with a maximum system budget of 60W (52W for drives). A 60W PoE++ injector is included for users without a suitable switch. A 1.47-inch colour LCM display on the front provides status updates, though it is non-interactive. A USB-C port rated at 5 Gbps adds external storage capability, addressing an omission noted in the original UNAS Pro, but it does not support UPS integration or networking adapters.

The UNAS Pro 4 NAS

4-Core ARM, 16GB RAM, 10GbE, 4x SATA Bays, 2x M.2 Bays (trays required), Redundant PSU (2nd Sold Seperately) $499HERE

Between these two extremes sits the UNAS Pro 4, a 1U rackmount unit designed for users who want the resilience of redundant PSUs and NVMe support without committing to an eight-bay chassis.

It includes four SATA bays and two M.2 NVMe slots, sharing the same ARM Cortex-A57 CPU and 16 GB of memory as the Pro 8. Like its larger counterpart, it is built for rack environments where redundancy and compact form factor are key priorities.

While exact dimensions and weight have not yet been confirmed (with the UNAS 2 and UNAS Pro 8 being the main focus of this new launch), the design is expected to follow Ubiquiti’s established rackmount conventions. Its specification profile makes it an option for smaller businesses or branch offices that need rack integration but do not require the capacity of an eight-bay system.

Category Specification
Form Factor Rackmount NAS (1U)
Drive Bays 4 x 2.5″/3.5″ SATA HDD/SSD
M.2 Support 2 x M.2 NVMe slots
RAID Support RAID 0, 1, 5, 6, clustered RAID, Single Disk
Hot Swap Supported
CPU Quad-Core ARM Cortex-A57, 1.7 GHz
Memory 16 GB LPDDR4 (non-upgradeable)
System Storage Internal flash for operating system
Network Interfaces Expected 2 x 10G SFP+, 1 x 10GbE RJ45 (matching UNAS Pro 8, TBC)
Power Method Dual PSU bays, hot-swappable modules
Power Supply 2 x hot-swappable AC/DC PSUs (1 included by default)
Cooling Multiple system fans with front-to-rear airflow
Management UniFi OS web interface; Ethernet, Bluetooth 4.1 for setup
Positioning Compact 1U rackmount, same CPU/RAM as Pro 8, with redundancy support

The UNAS 4 NAS

4-Core ARM, 4GB RAM, 1X 2.5GbE PoE+++ (TBC), 4x SATA Bays, 2x M.2 Bays (trays required), Power Over Ethernet delivery (PoE+++ Adapter Included) $379HERE

The UNAS 4, meanwhile, extends the desktop line and mirrors the design philosophy of the UNAS 2 but doubles the bay count.

It provides four 3.5″ SATA bays along with two M.2 slots, making it the only desktop model in the range to support NVMe caching or tiered storage.

It retains the same ARM Cortex-A55 CPU and 4 GB of fixed memory as the UNAS 2, positioning it as a modest but slightly more versatile desktop option.

Like the smaller model, it uses PoE+++ for power delivery and 2.5 GbE for connectivity, though it remains unconfirmed whether it will also include a secondary network interface for failover or link aggregation. As with other desktop models, the chassis is constructed from polycarbonate, with compact dimensions intended for office or home use rather than data centre deployment.

Category Specification
Form Factor Desktop NAS
Enclosure Material Polycarbonate
Drive Bays 4 x 3.5″ SATA HDD
M.2 Support 2 x M.2 NVMe slots (for caching/tiered storage)
RAID Support RAID 0, 1, 5 (dependent on bay usage)
Hot Swap Not confirmed (likely similar tray design to UNAS 2)
CPU Quad-Core ARM Cortex-A55, 1.7 GHz
Memory 4 GB LPDDR4 (non-upgradeable)
Network Interface 1 x 2.5 GbE RJ45 (PoE+++ power + data), possible secondary port (TBC)
USB Ports 1 x USB-C (5 Gbps, storage devices only)
Power Method PoE+++
System Storage Internal flash for operating system
Cooling Rear fan with bottom intake, adjustable via UniFi OS
Management UniFi OS web interface, Ethernet, Bluetooth 4.1 for setup
Positioning Desktop equivalent to UNAS 2, scaled up with four bays and M.2 support

UniFi Drive 3.3 Update?

Alongside the hardware announcements, UniFi will also release UniFi Drive 3.3, a major update to its NAS management software.

This version introduces expanded RAID configuration options, broader support for third-party cloud platforms, enhanced fan control, and improved analytical tools for monitoring system health and performance.

Snapshots and backups remain central features, with cloud and LAN targets supported, while the update also improves scheduling flexibility and introduces additional reporting features.

Although iSCSI remains absent, UniFi Drive continues to mature from the limited platform released with the first UNAS Pro, and the 3.3 update is expected to improve usability across the entire new range.

The introduction of these four models demonstrates Ubiquiti’s intent to build a full family of NAS solutions rather than rely on a single experimental release. By offering both rackmount and desktop systems at varying capacities, the company is positioning itself to compete more directly with established NAS vendors, albeit with a more streamlined and ecosystem-focused approach. The UNAS 2 and UNAS 4 are targeted primarily at existing UniFi users seeking simple storage that integrates seamlessly with PoE switches, while the Pro 4 and Pro 8 are built to appeal to businesses looking for redundancy, higher bay counts, and greater throughput. The use of ARM processors across the line reflects UniFi’s efficiency-first design, even though it places limits on heavy workloads such as virtualisation or multimedia transcoding.

Detailed performance reviews and comparisons of the new models are expected in the weeks ahead, assessing how each device performs within its target segment. Particular attention will focus on how the Pro units handle sustained 10GbE workloads with HDD and SSD configurations, how the PoE-driven desktop models cope with thermal and power constraints, and how UniFi Drive 3.3 stacks up against more mature operating systems. With Ubiquiti steadily fleshing out its NAS portfolio one year on from the first UNAS Pro, the company’s ability to deliver consistent updates and address early hardware and software limitations will determine whether it can establish a lasting position in the NAS market.

Feature UNAS Pro (2024) UNAS 2 UNAS 4 UNAS Pro 4 UNAS Pro 8
Price $499 $199 $379 $499 $799
Form Factor Rackmount (2U) Desktop Desktop Rackmount (1U) Rackmount (2U)
Dimensions Not confirmed 135 x 129 x 223.7 mm (13.5 x 12.9 x 22.37 cm) TBC (similar scale, polycarbonate) TBC (compact 1U rack) 442.4 x 480 x 87.4 mm (44.24 x 48.0 x 8.74 cm)
Weight Not confirmed 1.3 kg TBC (slightly heavier than UNAS 2) TBC 11.5 kg
Enclosure Material Metal (likely steel) Polycarbonate Polycarbonate SGCC steel SGCC steel
Drive Bays 7 x 2.5″/3.5″ SATA 2 x 3.5″ SATA 4 x 3.5″ SATA 4 x 2.5″/3.5″ SATA 8 x 2.5″/3.5″ SATA
M.2 NVMe Support None None 2 x M.2 NVMe 2 x M.2 NVMe 2 x M.2 NVMe
Hot Swap Supported Not supported (shared tray) Likely limited (TBC) Supported Supported
Max Drive Capacity > 20 TB confirmed Up to 30 TB confirmed Up to 30 TB expected Up to 30 TB expected Up to 30 TB confirmed
CPU Quad-Core ARM Cortex-A57, 1.7 GHz Quad-Core ARM Cortex-A55, 1.7 GHz Quad-Core ARM Cortex-A55, 1.7 GHz Quad-Core ARM Cortex-A57, 1.7 GHz Quad-Core ARM Cortex-A57, 1.7 GHz
Memory 8 GB (early models) 4 GB LPDDR4 (non-upgradeable) 4 GB LPDDR4 (non-upgradeable) 16 GB LPDDR4 (non-upgradeable) 16 GB LPDDR4 (non-upgradeable)
System Storage Internal flash (size not disclosed) Internal flash Internal flash Internal flash ~25.2 GB internal flash (likely 32 GB with OP)
Network Interfaces 1 x 10GbE RJ45 (front-mounted) 1 x 2.5 GbE RJ45 (PoE++) 1 x 2.5 GbE RJ45 (PoE+++), possible 2nd port (TBC) Expected: 2 x 10G SFP+, 1 x 10GbE RJ45 2 x 10G SFP+, 1 x 10GbE RJ45
USB Ports None 1 x USB-C (5 Gbps, storage only) 1 x USB-C (5 Gbps, storage only) None None
Power Method AC PSU (non-redundant) PoE++ (via 2.5 GbE) PoE+++ Dual PSU bays (hot-swappable) Dual PSU bays (hot-swappable)
Power Supply Integrated AC PSU 60W PoE++ injector included PoE+++ injector/switch required 2 x hot-swappable PSUs (1 included) 2 x 550W hot-swappable PSUs (1 included)
Max Power Budget Not published 52W for drives, 60W total TBC (expected ~80–100W) ~150W (TBC) 175W for drives, 200W total
Cooling Passive vents + fans, limited fan control (later patched) Rear fan, bottom vents, fan control via OS Rear fan with bottom intake, fan control Front-to-rear airflow, multiple fans Front-to-rear airflow, multiple fans
Display Small LCD panel with system info 1.47″ colour LCM (status only) TBC (likely same as UNAS 2) None None
Noise Levels Moderate (rackmount fans) ~31–32 dBA idle, up to ~38 dBA load Slightly higher than UNAS 2 (TBC) Typical 1U fan noise Adjustable, depends on drive/fan profile
Thermal Range CPU ~70–80°C under load CPU ~75–80°C stress, ~50–60°C idle Similar to UNAS 2 (TBC) ~70–80°C CPU under load CPU ~74–80°C, drives 38–47°C
Management UniFi OS web interface, Ethernet UniFi OS web interface, Ethernet, Bluetooth 4.1 UniFi OS web interface, Ethernet, Bluetooth 4.1 UniFi OS web interface, Ethernet, Bluetooth 4.1 UniFi OS web interface, Ethernet, Bluetooth 4.1
Software File System Btrfs, snapshots (basic) Btrfs, snapshots, backups Btrfs, snapshots, backups Btrfs, snapshots, clustered RAID Btrfs, snapshots, clustered RAID
Certifications FCC, CE (NDAA not confirmed) FCC, CE, IC; NDAA compliant FCC, CE, IC; NDAA compliant FCC, CE, IC; NDAA compliant FCC, CE, IC; NDAA compliant

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 
Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

If you like this service, please consider supporting us.
We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you. Anything you purchase on the day you click on our links will generate a small commission which is used to run the website. Here is a link for Amazon and B&H. You can also get me a ☕ Ko-fi or old school Paypal. Thanks! To find out more about how to support this advice service check HERE   If you need to fix or configure a NAS, check Fiver   Have you thought about helping others with your knowledge? Find Instructions Here  

☕ WE LOVE COFFEE ☕

Or support us by using our affiliate links on Amazon UK and Amazon US
     

À partir d’avant-hierFlux principal

UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Par : Fx
19 septembre 2025 à 07:00
UNIFI UNAS - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Après l’UNAS Pro lancé en octobre 2024, UniFi vient d’annoncer 4 nouveaux modèles de NAS : UNAS 2, UNAS 4, UNAS 4 Pro et UNAS 8 Pro. Que vous soyez un particulier ou une PME, chaque modèle a été conçu pour répondre à des usages précis, « sans compromis sur la simplicité ni sur la performance » selon le fabricant.

UNAS 2 : la simplicité avant tout

Premier modèle de la gamme, l’UNAS 2 est un NAS 2 baies pensé pour ceux qui recherchent un appareil compact, facile à installer et performant. Son design épuré (qui rappellera les produits Apple) et son installation via un seul câble PoE++ en font une solution idéale pour un bureau ou un usage domestique.

Ce NAS est construit autour d’un processeur quad core ARM Cortex A55 cadencé à 1.7 GHz et épaulé par 4 Go de mémoire vive.

 

UNAS 2 black white - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Caractéristiques principales :

  • 2 baies pour disques durs ;
  • processeur Quand Core ARM Cortex-A55 cadencé à 1,7 GHz ;
  • 4 Go de mémoire vive ;
  • 1 port réseau 2,5 Gb/s ;
  • connectique USB-C en façade ;
  • écran tactile intégré ;
  • disponible en deux coloris.

L’accès aux disques se fait par le dessous du boîtier, tandis que l’alimentation et le réseau passent par un unique câble RJ45. Un injecteur PoE 60 W est fourni. UniFi propose également des disques durs maison (1, 8, 16 et 24 To).

UNAS 2 dessous - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Son prix : 214,80€ TTC.

UNAS 4 : plus de stockage et toujours aussi simple

unas 4 face avant - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

L’UNAS 4 reprend les atouts du UNAS 2 tout en doublant les possibilités de stockage. Il propose 4 baies pour disques durs et 2 emplacements SSD NVMe pour le cache.

unas 4 dessous - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Le modèle n’est pas encore disponible mais son lancement est prévu avant la fin de l’année 2025. Son prix : 408€ TTC.

UNAS Pro 4 et Pro 8 : la gamme professionnelle

La série Pro s’adresse clairement aux entreprises et aux infrastructures IT. Ces modèles rackables misent « sur la puissance, la résilience et la flexibilité » selon le fabricant.

UNAS 8 PRo - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

Points clés :

  • 4 baies (UNAS 4 Pro) ou 8 baies (UNAS 8 Pro) ;
  • processeur Quad Core ARM Cortex-A57 à 2 GHz ;
  • 8 Go de RAM (UNAS 4 Pro)  ou 16 Go (UNAS 8 Pro) ;
  • 2 emplacements SSD NVMe pour le cache ;
  • 2 ports 10 Gb/s SFP+ et 1 port 10 Gb/s RJ45 avec MC-LAG ;
  • alimentation redondante (UNAS 8 Pro).

UNAS PRO 4 - UniFi UNAS : la nouvelle gamme de NAS alliant simplicité et performance

L’UNAS Pro 8 est conçu pour les charges de travail intensives, tandis que l’UNAS Pro 4 reprend la même puissance dans un format rackmount 1U compact.

Prix et disponibilité :

UniFi Drive : le logiciel qui unifie l’expérience

Tous les modèles UNAS reposent sur UniFi Drive, qui évolue avec les besoins utilisateurs. Ses intégrations cloud (AWS S3, Backblaze B2, Wasabi), son support Active Directory et ses modes de refroidissement personnalisables en font un atout majeur.

En syntèse

Avec cette nouvelle gamme, UniFi propose une offre de stockage claire et évolutive, couvrant les besoins des particuliers comme ceux des entreprises :

  • UNAS 2 : simplicité et compacité pour un usage domestique ;
  • UNAS 4 : plus de capacité sans complexité supplémentaire ;
  • UNAS Pro 4 & Pro 8 : puissance et fiabilité pour les pros.

Innovation pratique, gestion simplifiée et absence de frais récurrents : UniFi se positionne comme un acteur solide sur un marché du NAS en pleine mutation. Attention, les NAS UniFi sont destinés au stockage en réseau uniquement.

UniFi UNAS Pro 8 Review

Par : Rob Andrews
18 septembre 2025 à 16:02

The UniFi UNAS Pro 8 NAS Review – The Difficult 2nd Album…

Note, the UNAS Pro 2 is NOW LIVE on the UniFi Store . The UNAS 4, UNAS Pro 4 and UNAS Pro 8 are now in the site, but are not available till October.

The UniFi UNAS Pro 8 is the latest rackmount NAS in Ubiquiti’s gradually expanding storage lineup and serves as a direct successor to the UNAS Pro released in late 2024. That earlier seven-bay system introduced UniFi’s first attempt at a prosumer-class NAS with 10GbE connectivity and integration into the UniFi ecosystem, but it was limited in scope by its unusual drive count, absence of fan control, and lack of redundant power options. The Pro 8 addresses many of those concerns by standardising the layout to a full eight 3.5-inch bays, adding dedicated M.2 NVMe slots, and adopting a 2U rackmount form factor with hot-swappable dual power supplies. It also includes a set of rails in the box, something not always seen in turnkey solutions of this scale.

From a technical perspective, the UNAS Pro 8 remains anchored to an ARM-based architecture, employing a quad-core Cortex-A57 processor at 1.7 GHz paired with 16 GB of non-upgradeable memory. This positions it differently from x86 alternatives from Synology or QNAP, limiting its scope for high-end virtualisation or transcoding tasks but keeping overall efficiency high. Network expansion is one of its more striking features, with three 10GbE connections — two SFP+ and one copper port — included by default, offering redundancy and multi-channel potential well beyond the capacity of eight SATA drives. Taken together with the dedicated M.2 NVMe caching support and optional redundant PSUs, the Pro 8 represents an incremental but deliberate step forward in UniFi’s second phase of NAS development.

UniFi UNAS Pro 8 Review – Quick Conclusion

The UniFi UNAS Pro 8 is a clear refinement over the first-generation UNAS Pro, standardising the design to eight bays, introducing hot-swappable dual PSU support, and improving cooling and fan control, while also including rack rails for easier deployment. It delivers solid storage functionality with RAID up to level 6, clustered pools, snapshots, encryption, and read/write caching via NVMe modules, though the caching remains limited to automated policies and the required trays are sold separately. Networking is unusually strong for an eight-bay ARM system, with three 10GbE interfaces providing flexibility for aggregation or failover, even if the storage media is unlikely to saturate that bandwidth. Performance testing showed read speeds close to 850 MB/s in RAID 5 with HDDs, with lower write speeds reflecting the ARM Cortex-A57 processor’s constraints, and SSD arrays would likely achieve closer to 10GbE saturation. The operating system has matured but remains more streamlined than established platforms, with no iSCSI, limited protocol support, and basic backup tools, making it more suitable for straightforward file storage than advanced workloads. Ultimately, the Pro 8 fits best for users already invested in UniFi infrastructure or those seeking a rackmount NAS with strong connectivity and efficiency, but it is not yet a direct alternative to feature-rich solutions from long-standing NAS vendors. That said, if you want an incredible value and solid ‘storage-focused’ rackmount NAS solution – this might well be one of the best examples in 2025!

BUILD QUALITY - 9/10
HARDWARE - 8/10
PERFORMANCE - 7/10
PRICE - 9/10
VALUE - 10/10


8.6
PROS
👍🏻Multiple RAID Configurations supported, but also clustered RAID\'s and support of M.2 NVMes for Caching
👍🏻M.2 Injection is unique, well thought out and easy to utilise for caching
👍🏻THREE 10Gb/s PORTS (technically)! Kind of insane actually, for a 8x SATA drive machine
👍🏻Dual PSU and Failover hugely welcome, after it\'s omission on the UNAS Pro 2024
👍🏻16GB RAM out the box is a significant upgrade over the UNAS Pro from 2024
👍🏻Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
👍🏻Rackmount rails are included in the UNAS Pro 8 retail box, and are of a high quality
👍🏻Exceptionally appealing price point
👍🏻Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
👍🏻Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
👍🏻Ditto for the m.2 NVMe support, though you will need to m.2 adapter trays
👍🏻Comprehensive network storage software in UniFi NAS OS and Drive.
👍🏻Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
👍🏻\'Single Pane of Glass\' management and monitoring screen is very well presented!
👍🏻One of the fastest to deploy turnkey NAS solutions I have ever personally used!
CONS
👎🏻Lack of USB connectivity for convenient plug and share storage drives, network upgrades, 3rd party UPS support and more
👎🏻Very modest base hardware, but understandable relative to the price
👎🏻HDD injection is very unique, but prevents hot swapping
👎🏻Still a lack of client applications native to the NAS services for Windows, Mac, Andoid and Linux
👎🏻Shame about the LCD/LCM control panel being absent
👎🏻M.2 NVMes are not usable for storage pools, just read/write caching - which is a shame, given the large network connectivity available here

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

You can buy the UniFi UNAS Pro 8 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

UniFi UNAS Pro 8 Review – Design & Storage

The UNAS Pro 8 adopts a 2U rackmount form factor, measuring 442.4 x 480 x 87.4 mm and weighing 11.5 kg. The enclosure is constructed from SGCC steel, giving it a sturdy industrial build aimed at rack deployments rather than desktop placement. The system ships with rack rails included, which is uncommon among turnkey NAS appliances in this class, reducing the need for additional accessories when integrating it into an existing rack setup. The front panel presents a uniform layout of eight drive bays, standardising the design over the previous model’s unconventional seven-bay configuration and providing a more predictable arrangement for enterprise or prosumer storage planning.

Each of the eight bays supports both 3.5-inch and 2.5-inch HDDs or SSDs, with tool-less trays supplied for ease of installation. Drives slot in securely with a lockable motion, though there is no key-based locking mechanism on the trays themselves, limiting physical access protection. Installation is simple, with trays accommodating both large-capacity HDDs and smaller SSDs through included screws for 2.5-inch drives. While the bays can be partially populated for smaller-scale deployments, the absence of an expansion chassis option means users must fully plan around the eight-bay limit from the outset.

Cooling has been reworked compared with the earlier UNAS Pro. The system now features multiple fans with improved airflow across the drive bays and system board, supplemented by passive ventilation at the front and central areas of the chassis. Fan control has been integrated into the management software, allowing administrators to adjust fan speeds dynamically, a feature missing from the 2024 model. This provides more direct management of system acoustics and thermal balance, which is important given that high-density SATA arrays can run warm under sustained load.

In addition to the primary SATA storage, the rear of the chassis houses two M.2 NVMe slots. These are integrated into removable tray modules with thermal pads and heatsinks designed to dissipate heat from 2280 or 22110 length SSDs. However, the trays are not included by default, requiring a separate purchase if users wish to install their own NVMe drives.

The implementation is mechanically well thought out, but functionally limited: the NVMe drives can currently only be used for read and write caching.

They cannot be assigned to storage pools or volumes, restricting their utility for users seeking to leverage them as a high-speed tier alongside the eight SATA bays.

From a capacity perspective, the eight 3.5-inch bays allow the use of large modern drives, with confirmed compatibility during testing with 30 TB Seagate IronWolf units as well as UniFi-branded re-labelled Western Digital drives. The total maximum capacity therefore depends on the drives chosen, but the system power budget allocates up to 175W for drives, sufficient to support a full complement of high-capacity HDDs.

In practice, UniFi recommends their own labelled drives but does not enforce vendor lock-in, leaving flexibility for users to select from available NAS-grade HDDs and SSDs on the market. This more open stance is in contrast to the drive validation policies adopted by some established NAS vendors, and it provides an important degree of freedom in deployment.

UniFi UNAS Pro 8 Review – Internal Hardware

At the core of the UNAS Pro 8 is an ARM-based processor, specifically a quad-core Cortex-A57 running at 1.7 GHz. This architecture is consistent with UniFi’s approach in the earlier UNAS Pro, prioritising efficiency and lower power draw over raw computational performance. The choice of an ARM SoC means the device is well-suited for file storage, backups, and network-attached services, but it does not provide the same level of support for virtualisation, multimedia transcoding, or container workloads that x86-based systems can deliver. For users considering this system, the hardware direction underlines its positioning as a straightforward storage platform rather than an all-purpose server.

Memory is supplied in the form of 16 GB of LPDDR4, which is soldered to the board and cannot be upgraded. This is a relatively high baseline for an ARM-powered NAS, offering enough headroom for multi-user file access, caching operations, and handling larger RAID arrays without memory saturation. The allocation proved sufficient during array synchronisation tests, though high memory utilisation was observed when building an eight-drive RAID. This suggests the hardware has been provisioned carefully to meet expected workloads, albeit without scope for user expansion if requirements increase later.

The operating system is stored internally on dedicated flash storage, reported within the software as 25.2 GB, likely provisioned as a 32 GB module with some over-provisioning. This design ensures that installed drives remain fully dedicated to storage and that the system can boot independently of the data array. Storage management supports multiple RAID levels up to RAID 6, as well as clustered RAID groupings, providing some flexibility for mixed drive sizes. Combined with hot-swap support and optional failover protection through dual PSUs, the hardware configuration strikes a balance between basic efficiency and the inclusion of some enterprise features.

Component Details
CPU Quad-Core ARM Cortex-A57, 1.7 GHz
Memory 16 GB LPDDR4 (non-upgradeable)
System Storage ~25.2 GB internal flash (likely 32 GB total)
Drive Bays 8 x 2.5″/3.5″ SATA HDD/SSD
NVMe Support 2 x M.2 2280/22110 via rear trays (sold separately)
RAID Support RAID 0, 1, 5, 6, clustered RAID
Hot Swap Supported for HDD/SSD

UniFi UNAS Pro 8 Review – Connectivity & Throughput

The UNAS Pro 8 is equipped with three 10-gigabit network interfaces, consisting of two SFP+ 10G ports and one RJ45 10GbE port with multi-gigabit fallback to 5G, 2.5G, 1G, and 100 MbE. This level of connectivity is notable for a system limited to eight SATA bays, as even high-performance HDDs or SSDs in aggregate are unlikely to saturate more than a single 10GbE link under typical workloads.

While the inclusion of three ports may appear excessive, the arrangement allows for link aggregation, redundancy, and separation of traffic across multiple networks. In practice, this provides administrators flexibility in how the NAS integrates with existing switching hardware, though the real-world performance ceiling remains constrained by the storage media.

Power connectivity is handled through two hot-swappable AC/DC 550W power modules, though only one is included in the base configuration. Installing a second unit enables redundancy, ensuring uninterrupted operation in the event of PSU failure. Testing confirmed seamless failover when one module was removed during sustained read/write operations, with no observable disruption in data availability. However, the absence of USB or UPS integration ports limits external redundancy options, leaving users reliant solely on the dual-PSU configuration for power protection.

In terms of general I/O, the device is closed in design, with no USB ports, HDMI output, or PCIe expansion available. This reflects UniFi’s approach of positioning the system as a dedicated, self-contained appliance managed exclusively via network interfaces and the UniFi OS console. While this reduces versatility for use cases such as direct-attached backups or third-party hardware upgrades, it aligns with the brand’s ecosystem-driven philosophy.

Performance testing with eight 8TB drives in a RAID 5 configuration produced throughput in the region of 800–850 MB/s during sequential read operations. Write speeds were lower, reflecting both the RAID type and the limitations of the ARM Cortex-A57 processor, but still sufficient for multi-user file access and standard NAS workloads. Tests with larger 30TB Seagate IronWolf drives confirmed compatibility, though extended stress testing was not undertaken. With SATA SSDs or a RAID 0 array, the system would likely be capable of saturating a single 10GbE connection, though fully exploiting the three available ports remains unrealistic under the current hardware constraints.

The inclusion of two M.2 NVMe slots, limited to use as read/write cache, provides some performance enhancement. Caching can accelerate frequently accessed data reads or speed up ingest of new data before it is written to the HDD array. However, the caching mechanism is automated, with no user control over cache policies, and the NVMe drives cannot currently be used for storage pools. During operation, thermal imaging recorded SSD module temperatures in excess of 50°C, indicating adequate but stressed cooling under load. This reinforces the importance of active fan management, now included in UniFi’s updated software.

  • Networking: 2 x 10G SFP+, 1 x 10GbE RJ45 (5G/2.5G/1G/100M supported)

  • Power Supply: 2 x 550W hot-swappable AC/DC modules (1 included)

  • Management: Ethernet and Bluetooth 4.1 setup/admin

  • Other I/O: None (no USB, HDMI, or PCIe expansion)

  • Drive Support: 8 x 2.5″/3.5″ SATA HDD/SSD, 2 x M.2 NVMe (cache only)

  • Tested Performance: ~800–850 MB/s sequential reads (RAID 5, HDDs)

  • Write Performance: Lower than reads, limited by ARM CPU overhead

  • Cache Functionality: NVMe SSDs limited to automated read/write caching

UniFi UNAS Pro 8 Review – Software and Services

The UNAS Pro 8 runs on UniFi’s NAS management platform, designed to integrate with the broader UniFi ecosystem while remaining usable as a standalone system. Administration can be carried out through the UniFi OS console in a web browser or via the ui.com cloud portal, with optional remote access that can be enabled or disabled depending on security requirements.

The platform aims to provide a single interface for storage management, user access, and system monitoring. It is less feature-rich than mature alternatives such as Synology DSM or QNAP QTS, but it retains a streamlined design that prioritises ease of setup and centralised administration.

Storage management supports common RAID levels up to RAID 6, with the additional ability to cluster groups of drives into combined pools. Snapshots are available at the folder level, allowing users to roll back to earlier revisions of files. Encryption is supported, requiring a password to mount encrypted volumes after reboot, which ensures data protection in the event of device theft or unauthorised access.

NVMe SSDs can be assigned to caching, though as noted earlier, they cannot be added to storage pools. File access is available through SMB and NFS, but the range of supported protocols is narrower than on established NAS operating systems.

Backup functionality is split into two categories: system configuration backups and file-level backups. System configuration backups can be stored locally or uploaded to a ui.com account, allowing settings and structures to be restored to the same or another UniFi NAS device.

File-level backups extend to cloud services and other NAS units, with support for scheduled routines and basic rules such as overwrite or versioned backups. Cloud integration is functional but limited compared to established platforms, and external synchronisation features such as continuous sync or third-party plug-ins are not yet available.

User management is relatively straightforward, with the option to bind accounts to the wider UniFi ecosystem or create standalone local users. Access can be restricted to LAN-only connections, while two-factor authentication is available through UniFi’s identity and verification tools. At present, some advanced functions common to other platforms, such as iSCSI target creation or scheduled power management, remain absent.

The software continues to evolve, with updates adding features incrementally, but its current focus is on providing reliable core storage, backup, and access management rather than competing directly with the broad feature sets of long-established NAS vendors.

UniFi UNAS Pro 8 Review – Verdict and Conclusion

The UniFi UNAS Pro 8 represents a measured but important step forward compared with the earlier UNAS Pro model released in 2024. By moving to a uniform eight-bay arrangement, it avoids the odd seven-bay design that limited the practicality of the previous system and brings it in line with industry expectations for rackmount storage. The addition of dual hot-swappable power supply modules, though only one is supplied by default, introduces a level of redundancy that was absent in the earlier generation and proved reliable during testing with seamless failover. Improvements to cooling and fan control further distinguish it, with administrators now able to actively manage system noise and temperature rather than relying on fixed presets. UniFi has also bundled rack rails and a robust accessory kit, which simplifies installation and deployment. At the same time, the reliance on an ARM Cortex-A57 processor keeps the platform efficient but restricts its performance ceiling, limiting its suitability for high-throughput tasks such as large-scale virtualisation, multimedia transcoding, or environments where sustained multi-gigabyte per second throughput is essential.

On the software side, UniFi’s NAS operating system has matured since the first-generation release but still prioritises simplicity over feature breadth. The UNAS Pro 8 includes key storage capabilities such as RAID up to level 6, clustered pools, snapshots, encryption, and read/write caching via the rear-mounted NVMe modules. However, those same M.2 slots remain limited to caching only, and the trays required for installation must be purchased separately, which may be seen as an unnecessary barrier. Network protocol support is limited to common services such as SMB and NFS, with no iSCSI implementation, reducing its appeal for professional editing environments or enterprise applications that depend on block-level storage. Cloud and LAN backups are supported with basic scheduling and rules, but the absence of broader synchronisation features or third-party integration keeps it behind more mature platforms. The Pro 8 therefore delivers dependable core NAS functions but does not yet challenge the established ecosystems of Synology or QNAP. For organisations already invested in UniFi’s infrastructure or those requiring a straightforward rackmount storage system with multiple 10GbE connections, it offers a compelling option, but it remains best suited to use cases focused on file storage and backup rather than advanced workloads.

You can buy the UniFi UNAS Pro 8 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

 

PROs of the UniFi UNAS 2 NAS PROs of the UniFi UNAS 2 NAS
  • Multiple RAID Configurations supported, but also clustered RAID’s and support of M.2 NVMes for Caching
  • M.2 Injection is unique, well thought out and easy to utilise for caching
  • THREE 10Gb/s PORTS (technically)! Kind of insane actually, for a 8x SATA drive machine
  • Dual PSU and Failover hugely welcome, after it’s omission on the UNAS Pro 2024
  • 16GB RAM out the box is a significant upgrade over the UNAS Pro from 2024
  • Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
  • Rackmount rails are included in the UNAS Pro 8 retail box, and are of a high quality
  • Exceptionally appealing price point
  • Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
  • Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
  • Ditto for the m.2 NVMe support, though you will need to m.2 adapter trays
  • Comprehensive network storage software in UniFi NAS OS and Drive.
  • Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
  • ‘Single Pane of Glass’ management and monitoring screen is very well presented!
  • One of the fastest to deploy turnkey NAS solutions I have ever personally used!
  • Lack of USB connectivity for convenient plug and share storage drives, network upgrades, 3rd party UPS support and more
  • Very modest base hardware, but understandable relative to the price
  • HDD injection is very unique, but prevents hot swapping
  • Still a lack of client applications native to the NAS services for Windows, Mac, Andoid and Linux
  • Shame about the LCD/LCM control panel being absent
  • M.2 NVMes are not usable for storage pools, just read/write caching – which is a shame, given the large network connectivity available here

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

 

UniFi UNAS 2 Review

Par : Rob Andrews
18 septembre 2025 à 16:01

The UniFi UNAS 2 NAS Review – Value vs Scale

Note, the UNAS Pro 2 is NOW LIVE on the UniFi Store . The UNAS 4, UNAS Pro 4 and UNAS Pro 8 are now in the site, but are not available till October / Q4 2025

The UniFi UNAS 2 is a compact, entry-level two-bay desktop NAS introduced as part of Ubiquiti’s second phase of NAS development, following the debut of the UNAS Pro in 2024. That earlier seven-bay rackmount system was notable for its low $499 price and integrated 10GbE connectivity, but it had an unconventional design, limited fan control, and no support for USB expansion. By contrast, the UNAS 2 shifts away from rackmount hardware and into the desktop market, adopting a much smaller form factor and prioritising simplicity over raw performance. Measuring 13.5 x 12.9 x 22.37 cm and weighing only 1.3 kg, it is one of the smallest systems in the UniFi NAS range and is constructed from polycarbonate rather than steel, reinforcing its role as an affordable, lightweight device.

The hardware is designed primarily for modest storage requirements, supporting two 3.5-inch hard drives with a maximum combined power budget of 52W and an overall consumption ceiling of 60W. The device operates on a single 2.5 GbE RJ45 interface, which also functions as a PoE++ input, removing the need for a conventional power supply unit but requiring either a compatible PoE++ switch or the included 60W injector. This approach marks a clear departure from the UNAS Pro, which included a standard power connector and optional redundancy through additional PSU modules. In practice, the reliance on a single port for both power and data streamlines installation within UniFi networks, but it also introduces a single point of failure and reduces flexibility compared with larger systems.

UniFi UNAS 2 Review – Quick Conclusion

The UniFi UNAS 2 is a compact, entry-level NAS that prioritises simplicity and integration within the UniFi ecosystem over flexibility or raw performance. Its use of PoE++ for both power and connectivity makes installation straightforward in environments with compatible UniFi switches, but it introduces reliance on a single port and limits deployment outside that infrastructure, even with the included injector in the retail kit. The system supports two 3.5-inch drives in a shared non–hot-swappable tray, with RAID 0, RAID 1, or single-disk setups available, but there is no option for expansion or NVMe caching. Hardware consists of a quad-core ARM Cortex-A55 processor with fixed 4 GB of LPDDR4 memory, which is efficient but imposes clear limits on throughput and application scope. Performance testing produced read speeds up to 260 MB/s and writes in the 160–180 MB/s range, sufficient for the 2.5 GbE interface but reflective of the modest hardware and thermal constraints, with CPU temperatures often approaching 80°C under load. Software provides a clean interface with snapshots, RAID tools, backups to other UniFi NAS or cloud services, and user management tied to UniFi identity, but features such as iSCSI, encryption, and granular backup rules are absent. As a result, the UNAS 2 is best suited as a secondary or edge storage device, particularly for UniFi users seeking easy integration, but it lacks the scalability and depth of established NAS platforms needed for primary or enterprise deployments.

BUILD QUALITY - 9/10
HARDWARE - 7/10
PERFORMANCE - 7/10
PRICE - 10/10
VALUE - 9/10


8.4
PROS
👍🏻Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
👍🏻Exceptionally appealing price point
👍🏻Extremely low impact (power use, noise level, physical scale all great)
👍🏻Introduction of USB C 5Gb/s Connectivity is very welcome
👍🏻Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
👍🏻Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
👍🏻Comprehensive network storage software in UniFi NAS OS and Drive.
👍🏻Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
👍🏻\'Single Pane of Glass\' management and monitoring screen is very well presented!
👍🏻One of the fastest to deploy turnkey NAS solutions I have ever personally used!
CONS
👎🏻Single network port, though not a dealbreaker (as this is still just 2x SATA throughput), is not great in terms of a network failover or in deployment of SATA SSDs
👎🏻Choice of PoE deployment unusual and limits some deployments
👎🏻USB C connectivity does not support network adapters, NAS expansions or 3rd party UPS devices
👎🏻Very modest base hardware, but understandable relative to the price
👎🏻HDD injection is very unique, but it prevents hot swapping
👎🏻Still a lack of client applications native to the NAS services for Windows, Mac, Android and Linux

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

You can buy the UniFi UNAS 2 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

 

UniFi UNAS 2 Review – Design

The UNAS 2 adopts a small desktop form factor, measuring 135 x 129 x 223.7 mm and weighing 1.3 kg. Its enclosure is constructed from polycarbonate, which makes it lighter and less industrial than the steel-based rackmount models in UniFi’s NAS range. The compact build is suited for environments where space is limited, and it operates within an ambient temperature range of -5 to 40°C and a humidity tolerance of 10–90% non-condensing. With only two drive bays, the UNAS 2 positions itself as an edge device for simple storage and backup, rather than a primary data management system.

Drive installation is handled through a single removable cage that holds both 3.5-inch drives. Each drive clips into place using a shared tray design, with both units inserted in opposite orientations to align with the SATA connectors. While this arrangement is functional, it has some limitations.

There is no support for hot swapping, meaning the system must be powered down before drives can be replaced. Additionally, the shared cage design requires both drives to be handled together, which increases the risk of disturbing a healthy drive when removing or replacing a failed one.

Cooling is managed by a small fan located at the rear, supported by passive ventilation channels at the base of the unit. Air is drawn in from underneath and expelled from the top section, ensuring airflow across the drives and the system board. Thermal tests recorded CPU temperatures in the range of 75–80°C during higher utilisation, with the chassis surface reaching around 39–50°C depending on workload.

The fan is adjustable via UniFi’s management interface, offering a choice between balanced operation and higher cooling at the expense of noise.

Noise levels ranged from 31–32 dBA in idle to 35–38 dBA under load, influenced heavily by the vibration of installed drives.

At the front of the unit, UniFi has integrated a 1.47-inch colour LCM display for system information. This provides basic details such as network status, storage health, and system alerts, but it is not touchscreen and cannot be used for configuration.

The lack of interactive control means that most management tasks still need to be handled through the UniFi OS console. LED indicators are also present for system status, and a physical locking mechanism is built into the drive cage, preventing accidental removal.

From a storage perspective, the UNAS 2 supports standard RAID configurations for two drives, namely RAID 0 and RAID 1, in addition to single-disk setups. Given the limitations of two-bay devices, RAID 1 is the most practical option, prioritising data protection over capacity.

The system officially supports large-capacity HDDs, with tests confirming compatibility up to 30 TB drives. However, there is no expansion capability through additional enclosures, and the single USB-C port on the front is limited to attaching external drives for storage or backups. This means users are confined to the internal two-bay maximum, making long-term planning important for deployment.

UniFi UNAS 2 Review – Internal Hardware

The UNAS 2 is built around a quad-core ARM Cortex-A55 processor clocked at 1.7 GHz. This CPU architecture is designed for efficiency rather than high computational output, which makes it suitable for low-power storage operations, but less capable for advanced workloads such as virtualisation, heavy encryption, or on-the-fly media transcoding.

During testing, CPU temperatures generally remained in the 75–80°C range under sustained use, dropping closer to 50–60°C when idle or under light activity. While these figures fall within operating limits, they reflect the modest cooling design of the enclosure and the limited thermal headroom of the ARM-based hardware.

The device includes 4 GB of LPDDR4 memory, which is soldered to the board and cannot be expanded. This fixed allocation is sufficient for handling RAID 1 synchronisation, snapshots, and standard multi-user file operations, but it sets a ceiling on the system’s multitasking capability.

Unlike larger UniFi NAS models that feature 16 GB of memory, the UNAS 2’s hardware is intended only for light to moderate workloads. Memory use during testing reached high utilisation during RAID synchronisation but did not exceed available capacity, suggesting that UniFi has provisioned enough for the intended use case, while keeping the system constrained to its role as an entry-level solution.

The operating system is stored internally and runs independently of the installed drives, leaving both bays available for data. This separation ensures that the system can still boot even if both drives are removed or replaced. Storage management is limited to the basic RAID levels supported by two-bay systems, and no M.2 NVMe slots are included for caching or tiered storage, a feature reserved for larger UniFi NAS models. As such, the internal hardware of the UNAS 2 reflects its role as a secondary or edge device, designed primarily for straightforward storage and backup within a UniFi-managed network.

Component Details
CPU Quad-Core ARM Cortex-A55, 1.7 GHz
Memory 4 GB LPDDR4 (non-upgradeable)
Drive Bays 2 x 3.5″ SATA HDD
NVMe Support None
RAID Support RAID 0, RAID 1, Single Disk
Hot Swap Not supported
System Storage Internal flash for operating system

UniFi UNAS 2 Review – Connectivity & Performance

The UNAS 2 relies on a single 2.5 GbE RJ45 port for both data and power, with PoE++ providing up to 60W of combined budget. This integration reduces cabling and eliminates the need for an external power brick, but it introduces a single point of failure. That said, the UNAS 2 retail kit DOES include a PoE mains adapter, so ultimately the end user does have the option of deploying in a traditional manner (though power and network connectivity are still funnelled into the same connector).

If the cable or port fails, both power and connectivity are lost. A 60W PoE++ injector is included in the package for users without a compatible PoE++ switch, but this approach remains less flexible than traditional dual-port NAS designs. There is no secondary network interface, Wi-Fi connectivity (rare in a system of this scale, but would allow for failover if it was), support of a USB network adapter or option for link aggregation, which makes the system dependent on one connection for all network and power needs.

In addition to the Ethernet port, the front of the device includes a USB-C interface rated at 5 Gbps. This provides the ability to attach external storage devices, enabling data import, backups, or temporary storage expansion. However, the USB port is limited to storage and does not support network adapters, UPS integration, or official expansion enclosures. While the addition of USB-C addresses one omission from the UNAS Pro, its functionality is constrained and focused solely on external drive access.

Network throughput reflects the limitations of a dual-drive ARM-based NAS. In testing with two 8TB HDDs in RAID 1, sequential read speeds reached around 260 MB/s, while write speeds varied between 160–180 MB/s depending on workload. Benchmarks such as AJA and CrystalDiskMark confirmed this pattern, with read performance consistently higher than write due to the processor’s handling of RAID and data caching. These figures make effective use of the 2.5 GbE interface but leave no capacity to challenge higher multi-gigabit standards.

Power consumption aligns with UniFi’s published specifications, averaging 16–17W in idle, 18–20W during light activity, and 23–24W under heavier use. Peak usage during sustained transfers with RAID synchronisation reached approximately 25W, well below the 60W ceiling. Thermal monitoring showed the CPU rising toward 79–80°C under stress, though the chassis fan helped bring temperatures back into the 50–60°C range once load reduced. These results indicate that while the system operates within its defined limits, sustained workloads push the ARM processor and cooling system close to their maximum operating range.

Noise levels were modest, with idle operation producing around 31–32 dBA and workloads raising this to 35–38 dBA. The shared dual-drive cage design contributed to additional vibration, particularly when placed on a hard surface. Rubberised feet help dampen this effect, but vibration noise was noticeably reduced when the device was placed on softer material such as foam. Overall, while the system remains relatively quiet, its acoustic profile is closely tied to the drives selected and the surface it rests on.

  • Network Interface: 1 x 2.5 GbE RJ45 (PoE++)

  • USB Ports: 1 x USB-C (5 Gbps, storage only)

  • PoE Power Budget: 60W (52W available for drives)

  • Power Supply: 60W PoE++ injector included

  • Max Consumption: 60W (typical 16–25W during use)

  • Tested Performance: ~260 MB/s reads, 160–180 MB/s writes (RAID 1, HDDs)

  • Noise Levels: 31–32 dBA idle, up to 38 dBA under load

  • Temperature Range (Observed): 75–80°C CPU under stress, 50–60°C idle/light use

UniFi UNAS 2 Review – Software and Services

The UNAS 2 runs on UniFi’s NAS management platform, which follows the same single-pane-of-glass interface design seen in the UNAS Pro and UNAS Pro 8. Administration is carried out via a web browser or through a ui.com account, with the option to disable cloud access and operate the system entirely on a local network.

The interface consolidates system status, storage health, user accounts, and backup management into one dashboard. While straightforward to use, it does not provide the same level of customisation or feature depth offered by longer-established NAS operating systems such as Synology DSM or QNAP QTS.

Storage management is limited by the two-bay architecture. Users can create RAID 0 or RAID 1 volumes, or operate drives independently. Drive health monitoring, temperature reporting, and snapshot scheduling are all included, allowing basic resilience and file recovery options.

Snapshots can be created and managed at the folder level, with the ability to lock snapshots to prevent deletion. Encryption, however, does not appear to be available on the UNAS 2, in contrast to larger UniFi NAS models where encrypted volumes are supported.

Backup functionality includes both system configuration and file-level options. Configuration backups can be stored locally or uploaded to a ui.com account, allowing the system to be restored quickly if reset or replaced. File-level backups extend to other UniFi NAS systems and selected cloud services, including Google Drive, with scheduling available for automation.

Local LAN backups to other storage devices via SMB are also supported, though filtering and exclusion rules are limited. The system is therefore capable of basic backup routines but lacks the more granular tools available on competing platforms.

User and access management is integrated into the UniFi ecosystem. Administrators can create local accounts or bind accounts to UniFi’s identity services, with two-factor authentication supported via the UniFi Verify app.

Permissions can be set at the folder level, and users can be restricted to LAN-only access if required. Supported protocols include SMB and NFS, but there is no iSCSI target functionality, limiting its application in virtualisation or editing workflows.

The software also includes fan control and system monitoring tools, but resource reporting is basic, with only CPU and memory utilisation graphs available.

Overall, the software reflects UniFi’s effort to balance simplicity with integration, but it remains less comprehensive than that of established NAS vendors.

UniFi UNAS 2 Review – Verdict and Conclusion

The UniFi UNAS 2 is presented as a compact and affordable two-bay NAS designed for straightforward storage and backup tasks, particularly within environments already using UniFi networking hardware. Its PoE++ design is distinctive, allowing both power and connectivity to be delivered over a single cable, simplifying installation where compatible PoE switches are available. This approach aligns with UniFi’s strategy of reducing external hardware requirements, though it also means that a failed port or damaged cable will disable both power and network access simultaneously. For non-UniFi users, the reliance on PoE++ creates an additional barrier, as adoption requires either compatible infrastructure or the included 60W injector. The shared dual-drive tray, lack of hot-swap support, and absence of expansion options further reinforce the system’s role as a fixed-capacity solution, best suited to smaller or secondary deployments. With a maximum drive budget of 52W and overall consumption limited to 60W, the device is power-efficient, but its architecture prioritises simplicity over flexibility.

On the software side, the UNAS 2 provides a user-friendly interface with access to snapshots, RAID configuration, system backups, and integration into the UniFi identity ecosystem. However, the limited hardware constrains the range of features available, and certain tools seen in UniFi’s larger NAS models are absent, such as encrypted volumes or extended network protocol support. Performance testing showed sequential read speeds up to 260 MB/s and write speeds around 160–180 MB/s, which make full use of the 2.5 GbE interface but leave little headroom for more demanding tasks. Thermals during extended use regularly pushed the CPU into the high 70s Celsius, and although fan management can be adjusted, sustained workloads highlight the limits of the system’s cooling design. The software’s omission of iSCSI and advanced backup filters also narrows its role, making it less competitive against established vendors in professional or virtualisation scenarios.

Ultimately, the UNAS 2 is most appropriately positioned as an edge or secondary NAS, providing basic networked storage for existing UniFi users who value plug-and-play deployment and ecosystem consistency, but it is not equipped to serve as a primary system in larger or more demanding environments (VMs, Containers, etc). A great and unique NAS that will nbe at it’s most appealing if you are already invested in the UniFi ecosystem, or have a NAS already that needs a network backup.

You can buy the UniFi UNAS 2 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

PROs of the UniFi UNAS 2 NAS PROs of the UniFi UNAS 2 NAS
  • Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
  • Exceptionally appealing price point
  • Extremely low impact (power use, noise level, physical scale all great)
  • Introduction of USB C 5Gb/s Connectivity is very welcome
  • Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
  • Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
  • Comprehensive network storage software in UniFi NAS OS and Drive.
  • Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
  • ‘Single Pane of Glass’ management and monitoring screen is very well presented!
  • One of the fastest to deploy turnkey NAS solutions I have ever personally used!
  • Single network port, though not a dealbreaker (as this is still just 2x SATA throughput), is not great in terms of a network failover or in deployment of SATA SSDs
  • Choice of PoE deployment unusual and although an adapter for mains power is included, is still not for everyone
  • USB C connectivity does not support network adapters, NAS expansions or 3rd party UPS devices
  • Very modest base hardware, but understandable relative to the price
  • HDD injection is very unique, but it prevents hot swapping
  • Still a lack of client applications native to the NAS services for Windows, Mac, Android and Linux

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

 

TerraMaster F4-425 : NAS 4 baies avec Intel N5095 à prix abordable

Par : Fx
17 septembre 2025 à 07:00
TerraMaster F4425 - TerraMaster F4-425 : NAS 4 baies avec Intel N5095 à prix abordable

TerraMaster vient d’annoncer son nouveau NAS 4 baies : le F4-425. Derrière ce nom se cache un boîtier compact, animé par un processeur Intel N5095, accompagné de 4 Go de RAM (extensibles jusqu’à 16 Go) et doté d’un port réseau 2,5 GbE. Déjà disponible à la vente, il est proposé au tarif de 339,99€.

TerraMaster F4425 - TerraMaster F4-425 : NAS 4 baies avec Intel N5095 à prix abordable

TerraMaster F4-425

Le TerraMaster F4-425 se présente comme un NAS accessible, pensé pour les utilisateurs recherchant un bon compromis entre performance et prix.
Le boîtier, en plastique gris foncé, reprend le design sobre et habituel de la marque. Côté gabarit, il mesure 222 × 179 × 154 mm et affiche 2,1 kg sur la balance (à vide). Il dispose de 4 emplacements compatibles avec les disques durs et les SSD.

TerraMaster F4 425 - TerraMaster F4-425 : NAS 4 baies avec Intel N5095 à prix abordable

Caractéristique technique

Le F4-425 est construit autour d’un processeur Quad Core Intel N5095 cadencé à 2 GHz (jusqu’à 2,9 GHz en mode turbo). Grâce à son iGPU intégré, il prend en charge le transcodage matériel de vidéos Ultra HD/4K (encodée en H.265). Le NAS est livré avec 4 Go de DDR4, extensible jusqu’à 16 Go. Attention, un seul emplacement mémoire est disponible. A noter que le processeur obtient un score de 4027 points selon PassMark.

Interfaces de connexion

F4 425 arriere - TerraMaster F4-425 : NAS 4 baies avec Intel N5095 à prix abordable

La connectique est assez complète pour un modèle de cette gamme :

  • 1 USB 3.0 à l’arrière ;
  • 2 USB 3.2 Gen 2 10 Gb/s (dont 1 à l’avant) ;
  • 1 port réseau 2,5 Gb/s ;
  • 1 sortie HDMI.

TOS 6

Comme les autres modèles de la marque, le F4-425 fonctionne sous TOS 6, le système maison de TerraMaster. Ce dernier est robuste, il dispose de nombreuses fonctionnalités et il n’a pas à rougir face aux concurrents. Il propose même un équivalent du SHR, nommé TRAID. Bien sûr, il est possible d’y loger des machines virtuelles ou encore faire de la conteneurisation avec Docker.

Prix et disponibilité

Voilà un NAS qui ne laissera personne indifférent. Le F4-425 est relativement complet et affiche un excellent rapport qualité-prix. Bien sûr, il présente quelques limites (un seul port réseau, pas de slot NVMe, un seul emplacement RAM…), mais à ce tarif, difficile de trouver mieux pour un NAS 4 baies équipé d’un processeur Intel récent. Le NAS est d’ores et déjà accessible à un prix public de 339,99€. Et il faut bien avouer qu’un NAS de cette capacité, avec ce processeur Intel N5095, c’est un excellent tarif.

Pour en savoir plus, rendez-vous sur la page officielle du fabricant

Why is 10GbE STILL NOT Everywhere (especially on NAS)?

Par : Rob Andrews
15 septembre 2025 à 18:00

Why are NAS Systems not 10GbE as Standard Right Now?

It is 2025, yet the majority of NAS systems on the market continue to ship with 1GbE or, at best, 2.5GbE networking, leaving many users questioning why 10GbE has not become a standard feature. Over the past decade, the cost of 10GbE networking equipment, including switches, NICs, and adapters, has steadily declined, and the technology has long since moved from being an enterprise-only option into mainstream availability. Home labs, creative professionals, and small businesses are increasingly working with 4K and 8K media, large VM environments, and multi-terabyte datasets, all of which can easily saturate a 1GbE or even 2.5GbE connection. Despite this shift, when browsing the portfolios of Synology, QNAP, Asustor, TerraMaster, or even newer DIY-friendly NAS brands, the entry-level and mid-tier systems remain locked at bandwidth speeds that are already dwarfed by modern SSD arrays and multi-bay RAID configurations.

asdasd

This gap between user expectations and manufacturer offerings has become more striking as affordable consumer motherboards and even some mini-PCs now integrate 5GbE or 10GbE as standard. By contrast, NAS vendors still tend to position 10GbE as a high-end add-on or restrict it to flagship models, often requiring costly proprietary NIC upgrades. For the average buyer, this creates the perception that NAS devices are lagging behind broader networking trends and are artificially constrained to maintain price tiers. The reality is more complex. The question of why 10GbE has not become universal in NAS hardware cannot be answered solely by pointing to falling market prices of controllers and switches. Instead, the explanation lies in a mix of economics, hardware design limitations, CPU lane allocations, and the fact that networking itself is evolving beyond 10GbE into alternatives like 25GbE and USB4. All of these factors together show why the integration of 10GbE into NAS devices remains more complicated than it may first appear.

Discussing the Issue / Barriers to Manufacturers

One of the most persistent barriers to universal 10GbE adoption in NAS systems is the economic reality of how these devices are positioned. Vendors like Synology, QNAP, and Asustor operate in a layered product ecosystem, where each tier is designed to push customers toward more expensive models. Entry-level devices often compete on affordability rather than raw performance, meaning that features like 10GbE are deliberately held back to differentiate mid-range and enterprise systems. The actual bill of materials (BOM) cost for including 10GbE hardware is lower than it was five years ago, but manufacturers still view it as a premium feature that justifies higher price points. By holding 10GbE in reserve for upper tiers, vendors protect their margins, avoid cannibalising sales of more profitable models, and keep upgrade paths clear for customers as their needs grow. This is not simply technical gatekeeping but a conscious market segmentation strategy.

A second, more technical challenge comes from CPU and chipset design. The processors used in affordable NAS devices are almost always low-power embedded models—Intel Celeron, Atom, or entry-level AMD Ryzen Embedded chips—which provide only a limited number of PCIe lanes. These lanes must be distributed across storage controllers, NVMe slots, expansion slots, and network interfaces. Introducing 10GbE requires not only dedicating at least two, and often four, PCIe lanes, but also ensuring that the CPU can handle the higher throughput without becoming the bottleneck. If a vendor reallocates lanes to add 10GbE, they may have to reduce the number of NVMe slots, cut down on SATA ports, or compromise expansion card bandwidth. For many manufacturers, it is simpler to leave 10GbE out of the base design than to risk producing a system that looks good on paper but struggles to deliver in practice.

Beyond lane allocation, there is also the issue of power, thermals, and board layout. 10GbE controllers typically draw more power and generate more heat than 1GbE or 2.5GbE chips. In compact NAS enclosures designed for low-noise operation, this can force more aggressive cooling solutions or tighter thermal management. For brands already working within strict acoustic and energy efficiency limits, especially in home or small office NAS devices, the integration of 10GbE becomes a balancing act between speed and stability. Higher thermal load can also reduce the overall lifespan of components or require larger enclosures, both of which erode the appeal of entry-level systems where buyers expect compact and efficient designs.

Another factor that discourages widespread 10GbE adoption is ecosystem alignment. NAS vendors are keenly aware that a large percentage of their target audience does not yet operate in 10GbE-ready environments. Even though 10GbE switches and NICs are more affordable in 2025, many households and small offices still rely on routers and switches with 1GbE or 2.5GbE uplinks. For these users, the inclusion of 10GbE would have little practical benefit, since the rest of the network infrastructure cannot support it. From the manufacturer’s perspective, bundling 10GbE into a device that will simply be throttled by the customer’s network backbone risks making the feature look pointless, or worse, “non-functional.” As such, 10GbE tends to be reserved for prosumer and enterprise segments, where it is more likely that users already have or are willing to invest in compatible infrastructure.

Finally, there is a subtle but important business factor at play: vendor ecosystems and upsell opportunities. Many NAS brands sell proprietary 10GbE upgrade cards or branded NICs, which can only be used with their systems. By omitting onboard 10GbE but providing expansion slots, vendors create an additional revenue stream while giving customers flexibility to upgrade later. This model also ensures that users who truly require 10GbE end up spending more within the brand’s ecosystem, while casual buyers stick to lower-cost systems that do not overdeliver. In this sense, the absence of 10GbE on affordable NAS units is not only about technical limitations, but also about preserving a staged upgrade model that aligns with each brand’s long-term revenue strategy.

The Solution – How Can 10GbE Be More Accessible?

The landscape for 10GbE networking hardware has improved significantly in the last few years, with controllers becoming cheaper, more efficient, and easier to integrate into consumer systems. Early 10GbE relied heavily on costly Intel or Mellanox chipsets designed primarily for enterprise servers, often priced in the hundreds of dollars per card. Today, vendors such as Realtek, Aquantia (now under Marvell), and Broadcom produce consumer-focused 10GbE controllers that are smaller, run cooler, and consume less power. These newer chipsets are also designed to integrate more smoothly with mainstream CPUs and motherboards, reducing the need for complex PCB layouts. The result has been a marked reduction in the cost of standalone NICs and USB-to-10GbE adapters, which now frequently sell for under $100, making them accessible even for home users experimenting with faster networking.

Even with this progress, manufacturers remain hesitant to make 10GbE a baseline feature across all NAS devices. Part of the reason lies in how modern NAS systems must juggle limited resources. As CPUs have shifted to PCIe Gen 4 and Gen 5, the available bandwidth has increased, but vendors are also using these lanes to expand NVMe storage pools, enable GPU acceleration, or add AI-focused co-processors for surveillance, indexing, or media analysis. In many cases, vendors see greater value in offering more M.2 slots, dual PCIe expansion options, or flexible NIC bays than in permanently dedicating space to 10GbE. This explains why hybrid designs are now common: devices shipping with 2.5GbE or 5GbE onboard, with a dedicated slot for an optional 10GbE card. Such configurations give users a faster-than-gigabit baseline, but also keep upgrade paths open for power users who truly need multi-gigabit networking.

The state of 10GbE is also being influenced by the rapid adoption of adjacent technologies. 2.5GbE has become the de facto standard in new consumer motherboards and mid-tier switches, offering a cheap and widely compatible upgrade path for everyday users who want more than 1GbE without changing their cabling. At the other end of the spectrum, higher-speed networking such as 25GbE or 40GbE is filtering down from data centres to advanced prosumer setups, while direct-connect solutions like Thunderbolt 4 and USB4 offer bandwidth well beyond 10GbE with less CPU overhead and simpler plug-and-play deployment. Software optimisation is also playing a role: modern NAS operating systems increasingly support IP over Thunderbolt or USB4, which provides a parallel path to multi-gigabit performance without the traditional reliance on Ethernet standards. As a result, 10GbE finds itself squeezed in the middle—too expensive to be a no-brainer at the entry level, but increasingly overshadowed by faster alternatives at the top end. It remains a critical sweet spot for small businesses and creative professionals, but its window of dominance is being challenged by the pace of networking innovation.

Verdict and Conclusion – Buy a 10GbE NAS Now or Wait?

The question of why 10GbE has not become a standard feature across NAS devices in 2025 does not have a single answer, but rather a convergence of factors. Manufacturers face technical challenges in CPU lane allocation, thermal management, and system design, while also making deliberate market choices to protect product segmentation and encourage upsell opportunities. At the same time, 10GbE sits in an awkward position within the networking landscape: cheaper and more efficient than ever, yet increasingly bypassed by the widespread adoption of 2.5GbE on the low end and the emergence of 25GbE, Thunderbolt, and USB4 on the high end. For now, this means that 10GbE remains reserved for higher-tier NAS systems where the hardware can genuinely sustain its throughput and where the user base is prepared to invest in compatible infrastructure. While prices will continue to fall and adoption will grow, it is unlikely that every NAS will adopt 10GbE as standard before other technologies begin to replace it as the next performance baseline.

5 affordable Turnkey 10GbE NAS Solutions (Between $499 and $699)

For years, 10GbE networking has been seen as a premium feature reserved for high-end or enterprise-grade NAS devices, often pushing total system costs well beyond the reach of home users and small businesses. However, as controller prices have dropped and demand for faster data transfers has grown, a new wave of affordable NAS solutions has started to appear with built-in 10GbE. These systems no longer require expensive proprietary upgrade cards or third-party NICs, and many sit comfortably below the $699 / £599 price point. They cover a range of use cases, from compact SSD-based NAS devices to rackmount storage appliances and versatile desktop units. Below is a selection of some of the most notable options currently available, each offering a balance of performance, connectivity, and affordability for users who want to move beyond 1GbE or 2.5GbE without breaking the bank.

UniFi UNAS Pro (7-Bay, Rackmount)

I keep coming back to two words for the UniFi UNAS Pro—fundamentals and consistency. UniFi has clearly focused on making this system a strong addition to their ecosystem, prioritizing the essential storage needs of a NAS. They’ve succeeded in this, but comparisons with long-established competitors are inevitable. While solid, reliable, and stable, the UniFi UNAS Pro will take time to be competitive on the software front. If you’re deeply invested in the UniFi ecosystem, you’ll appreciate its ease of use and integration. However, outside of a UniFi network, it may feel feature-light compared to alternatives. The pricing is competitive for a launch product at $499, and while it’s not the best NAS on the market, it’s the most user-friendly and UniFi-ready. It will likely satisfy many users’ needs. I can certainly see this being integrated into existing UniFi networks as a 2nd stage backup alongside their already existing 3rd party NAS solution, with the potential to graduating to their primary storage as Ubiquiti continue to evolve this platform above and beyond the fundamentals their have nailed down in the UNAS Pro system.

  • Approx. Price: $499 / £400

  • Specs: ARM Cortex-A57 quad-core CPU, 8 GB RAM, seven 2.5″/3.5″ SATA bays, 1×10GbE SFP+ and 1×1GbE.

  • Why It Stands Out: Exceptional price-to-performance for pure storage needs. Lacks advanced multimedia or container apps but ideal for high-speed backups in a rackmount setup.

BUILD QUALITY - 10/10
HARDWARE - 7/10
PERFORMANCE - 7/10
PRICE - 9/10
VALUE - 8/10


8.2
PROS
👍🏻Nails down the fundamentals of NAS Storage very well
👍🏻Easy to use GUI and well suited in the UniFi Ecosystem/UX
👍🏻Complete Offline Use is supported
👍🏻Use of a UI account is NOT compulsory
👍🏻Excellently deployed Snapshot Features
👍🏻10GbE out-the-box
👍🏻Open HDD Compatibility, but also 1st party options too
👍🏻Backup and Restoration Options Nailed down perfectly
👍🏻Very power efficient and CPU/, Memory utilization rarely high
👍🏻Compact, Quite and well designed chassis
👍🏻The LCD controls are completely \'different level\' compared to other brands in the market
👍🏻Promised competitive pricing
👍🏻FAST deployment (3-5mins tops)
👍🏻Reactive Storage expandability and easy-to-understand storage failover options
👍🏻Mobile app deployment is intuitive/fast
👍🏻Feels stable, secure and reliable at all times
👍🏻Performance is respectable (considering SATA Bay count and CPU) but also sustained performance is very good
👍🏻Single screen dashboard is clear and intuitive
👍🏻Ditto for the native file explorer
CONS
👎🏻7 Bays is a bit unusual, plus feels like the existing UNVR with different firmware
👎🏻Additional App installation (eg. \'Protect\') not currently supported. So no container support for 3rd party apps
👎🏻Network Controls are limited
👎🏻Works at it\'s best in an existing UniFi managed network, feels a little limited in \'standalone\'
👎🏻Multiple storage pools not supported (nor is RAID 0)
👎🏻Lack of Scheduled On/Off
👎🏻Lack of redundant PSU
👎🏻Only 1 10Gb port and 1x 1GbE, no USBs for expanded storage or an expansion


 

Asustor Flashstor 12 Gen 1 (Compact NVMe NAS)

The Asustor Flashstor Gen 2 12-Bay NAS is a robust and versatile solution for users with demanding storage needs. Its combination of high-performance hardware, extensive connectivity options, and compact design makes it a standout choice for content creators, small businesses, and enthusiasts. With dual 10GbE ports, USB 4.0 connectivity, and support for up to 12 M.2 NVMe drives, it offers exceptional speed and scalability. While the device has a few quirks, such as its mixed PCIe slot speeds and lack of M.2 heat sinks, these are manageable with proper planning and aftermarket solutions. The Flashstor Gen 2 excels in raw performance, handling intensive workflows with ease and maintaining low noise levels even under load. Its power efficiency and robust thermal management further enhance its appeal for 24/7 operation. For users prioritizing hardware capabilities and performance, the Flashstor Gen 2 delivers on its promises. While its complexity may deter less experienced users, those with the technical expertise to configure and optimize the system will find it a valuable addition to their workflow.

  • Approx. Price: $750 / £600

  • Specs: Intel Celeron N5105, 12×M.2 NVMe slots, single 10GbE port, compact form factor.

  • Notable Traits: High-density SSD storage in a small desktop chassis. Excellent value for SSD-heavy builds.

SOFTWARE - 6/10
HARDWARE - 9/10
PERFORMANCE - 10/10
PRICE - 7/10
VALUE - 8/10


8.0
PROS
👍🏻Exceptional Performance: Dual 10-Gigabit Ethernet ports and USB 4.0 connectivity deliver fast and reliable data transfer speeds, ideal for 4K editing and collaborative environments.
👍🏻Extensive Storage Options: Supports up to 12 M.2 NVMe SSDs, allowing for large-scale, high-speed storage arrays.
👍🏻ECC Memory Support: Includes 16GB of DDR5-4800 ECC memory (expandable to 64GB), ensuring data integrity for critical applications.
👍🏻Compact Design: Small footprint makes it perfect for workspaces with limited room.
👍🏻Quiet Operation: Dual-fan system keeps noise levels low, even under heavy loads.
👍🏻Flexible Connectivity: Features two USB 4.0 Type-C ports and three USB 3.2 Gen 2 Type-A ports for direct storage access and peripheral integration.
👍🏻Power Efficiency: Low power consumption (32.2W idle, 56W under load) makes it economical to run, even for 24/7 operation.
👍🏻Thermal Management Enhancements: Dual fans and copper heat pipes efficiently dissipate heat, ensuring stable performance.
👍🏻Support for Third-Party Operating Systems: Compatible with platforms like TrueNAS and Unraid for advanced customization.
CONS
👎🏻Mixed PCIe Slot Speeds: Inconsistent PCIe bandwidth across M.2 slots complicates unified RAID configurations.
👎🏻Lack of M.2 Heat Sinks: NVMe slots do not include heat sinks, requiring aftermarket cooling solutions for intensive workloads.
👎🏻No Integrated Graphics: The AMD Ryzen V3C14 processor lacks integrated graphics, limiting hardware transcoding and multimedia capabilities.
👎🏻Steep Price: The 12-bay model’s cost ($1,300–$1,400) and the six-bay version’s lack of ECC memory make them expensive compared to alternatives.


 

UGREEN NASync DXP4800 Plus

BOTTOM LINE – The UGREEN NASYnc DXP4800 Plus does not feel ‘finished’ yet and still needs more time in the over, but UGREEN have been very clear with me that this product is not intended for release and fulfilment till summer 2024 and improvements, optimization and product completion is still in progress. Judging the UGREEN NAS systems, when what we have is a pre-release and pre-crowdfunding sample, was always going to be tough. The DXP4800 PLUS is a very well put-together NAS solution, arriving with a fantastic launching price point (arguably even at its RRP for the hardware on offer). UGREEN has clearly made efforts here to carve out their own style, adding their own aesthetic to the traditional 4-bay server box design that plagues NAS boxes at this scale. Equally, although they are not the first brand to consider Kickstarter/Crowdfunding for launching a new product in the NAS/personal-cloud sector, this is easily one of the most confident entries I have seen yet. The fact that this system arrives on the market primarily as a crowdfunded solution (though almost certainly, if successful, will roll out at traditional retail) is definitely going to give users some pause for thought. Equally, the UGREEN NAS software, still in beta at the time of writing, although very responsive and nailing down the basics, still feels like it needs more work to compete with the bigger boys at Synology and QNAP. Hardware architecture, scalability, and performance are all pretty impressive, though the performance of the Gen 4×4 M.2 NVMe slots didn’t seem to hit the numbers I was expecting. Perhaps a question of PCIe bottlenecking internally, or a need for further tweaking and optimization as the system continues development. Bottom line, with expected software updates to roll out closer to launch and fulfillment, such as an expanded App center and mobile client, the UGREEN DXP4800 Plus is definitely a device worth keeping an eye on in the growing Turnkey and semi-DIY NAS market. As an alternative to public cloud services, this is a no-brainer and worth the entry price point. As an alternative to established Turnkey NAS Solutions, we will hold off judgment till it is publicly released.

  • Approx. Price: $595 / £475

  • Specs: Intel Pentium Gold 8505 (6-thread), 8 GB DDR5, 4×SATA + 2×M.2 slots, 1×10GbE and 1×2.5GbE, plus HDMI, USB-C, USB-A, and SD reader.

  • Why It’s Attractive: Well-rounded design with rich connectivity and media support, undercuts most rivals on price and features.

SOFTWARE - 6/10
HARDWARE - 9/10
PERFORMANCE - 6/10
PRICE - 9/10
VALUE - 8/10


7.6
PROS
👍🏻Exceptional Hardware for the Price
👍🏻4 HDDs + 2x Gen 4x4 M.2 in 1 box under $400
👍🏻Good Balanced CPU choice in the Pentium Gold 8505
👍🏻10GbE and 2.5GbE as standard
👍🏻An SD Card Slot (wielrd rare!)
👍🏻10/10 Build Quality
👍🏻Great Scalability
👍🏻Fantastic Mobile Application (even vs Synology and QNAP etc)
👍🏻Desktop/Browser GUI shows promise
👍🏻Established Brand entering the NAS Market
👍🏻Not too noisy (comparatively)
👍🏻Very Appealing retail package+accessories
CONS
👎🏻10GbE Performance was underwhelming
👎🏻Crowdfunding choice is confusing
👎🏻Software (still in Beta) is still far from ready 22/3/24
👎🏻non-UGREEN PSU is unexpected
👎🏻


 

TerraMaster F4-424 Max / F6-424 Max

The TerraMaster F4-424 Max is a robust 4-bay NAS system that offers a powerful mix of features and flexibility for a wide range of tasks. Powered by the Intel i5-1235U CPU with 10 cores and 12 threads, the F4-424 Max excels at resource-intensive applications such as Plex media streaming, 4K hardware transcoding, and virtual machine hosting. Its dual M.2 NVMe slots running at PCIe Gen 4 speeds significantly improve storage performance, especially when used for caching, while the two 10GbE ports offer high-speed networking environments, allowing for 20Gbps throughput via link aggregation.

In terms of software, TOS 6 brings notable improvements, although it still lags behind the more polished ecosystems of Synology DSM and QNAP QTS. That said, TerraMaster’s continuous software evolution with each new version of TOS ensures that users have access to more robust tools and security features. For its price point of $899.99, the F4-424 Max is a compelling option for those seeking high-performance NAS solutions with scalability in mind. While the Pro model offers competitive performance, the Max takes it a step further with advanced networking, making it ideal for environments where speed is a priority.

  • Approx. Price: $675 / £550 (F4-424 Max, during sale) – $899 / £700 (F6-424 Max, regular)

  • Specs: Intel Core i5-1235U (10-core), 8 GB RAM, dual 10GbE ports, dual M.2, with 4 or 6 SATA bays depending on model.

  • Why It Helps: The F4-424 Max frequently drops below the $800 mark in promotions, offering unusually strong CPU performance and dual 10GbE at a mid-range price point.

Where to Buy?

Terramaster F4-424 Max ($899 Amazon)HERETerramaster F4-424 Max ($799 Aliexpress) – HERE

SOFTWARE - 6/10
HARDWARE - 9/10
PERFORMANCE - 9/10
PRICE - 9/10
VALUE - 8/10


8.2
PROS
👍🏻Powerful Hardware: Intel i5-1235U with 10 cores and 12 threads for resource-heavy tasks.
👍🏻Dual 10GbE Ports: High-speed networking capabilities with link aggregation for up to 20Gbps, ideal for large file transfers.
👍🏻PCIe Gen 4 NVMe Support: Two M.2 NVMe slots offering exceptional performance for caching or additional high-speed storage.
👍🏻Efficient Cooling: The large 120mm fan ensures quiet and effective cooling, making it suitable for home and office environments.
👍🏻Improved TOS 6 Software: Enhancements in GUI, backup tools, and overall security bring TOS closer to its competitors.
CONS
👎🏻Higher Price Tag: At $899.99, it’s more expensive than TerraMaster’s other models, which may deter budget-conscious buyers.
👎🏻No PCIe Expansion: Lack of a PCIe slot limits potential for future upgrades, such as adding 10GbE cards or more M.2 drives.
👎🏻Presentation: The software has improved a lot, but still feels inconsistent in places compared with alternatives from brands such as Synology and QNAP.

 


Summary Table

 

Model 10GbE Ports Price (USD) Under $800? Highlights
UniFi UNAS Pro 1×10GbE SFP+ ~$499 Yes Rackmount, high bay count, pure storage
Asustor Flashstor 12 Gen 1 1×10GbE ~$750 Yes 12×M.2 NVMe, SSD-focused design
UGREEN DXP4800 Plus 1×10GbE + 1×2.5GbE ~$595 Yes Versatile ports, compact and affordable
QNAP TS-332X 1×10GbE SFP+ ~$600–700 Yes Entry-level 10GbE desktop NAS
TerraMaster F4-424 Max 2×10GbE ~$675 (sale) Yes Strong CPU, 4-bay, Plex-friendly
TerraMaster F6-424 Max 2×10GbE ~$899 No 6-bay version, exceeds budget

 

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

QNAP Qu405, Qu605 and Qu805 NAS Revealed

Par : Rob Andrews
9 septembre 2025 à 10:17

QNAP Qu405, Qu605 and Qu805 NAS Coming Soon for Home and SMB Users

QNAP has officially launched the QuX05 series in the Eastern market, introducing three new desktop NAS systems: the Qu405 (4-bay), Qu605 (6-bay), and Qu805 (8-bay). Designed to refresh QNAP’s mid-range portfolio, these models target home users seeking centralised storage, creative professionals handling large-scale multimedia, and small to medium-sized businesses in need of reliable file servers with room to grow. Hardware configurations are offered in two processor options, with the Intel Core 3 N355 eight-core chip running up to 3.9 GHz for higher performance workloads, and the Intel N150 quad-core option at up to 3.6 GHz for cost-conscious deployments. All units adopt DDR5 memory, available in 8 GB or 16 GB SKUs, with support capped at 16 GB via a single slot, which while modest, still provides a step up in bandwidth over DDR4 used in older NAS systems. Storage capacity scales with the number of bays, from four in the Qu405 to eight in the Qu805, and each model also includes two M.2 PCIe Gen3 slots that can be assigned for cache acceleration or used as part of the storage pool. Connectivity has been modernised with dual 2.5GbE ports supporting SMB Multichannel and Port Trunking, USB 3.2 Gen2 across Type-A and Type-C, and a dedicated HDMI output capable of 4K60 playback or VM projection, ensuring these systems can function as both storage appliances and multimedia platforms.

The QuX05 series also benefits from QNAP’s dual operating system approach, allowing users to deploy either the established QTS software environment or the QuTS hero ZFS-based platform for improved data protection, inline deduplication, and snapshot functionality. Integrated AI-powered tools such as QuMagie for photo organisation, Qsirch for semantic search, and Qfiling for automated archiving further extend the usability of the series, making it suitable for both consumer and business applications. The timing of this release is notable, as QNAP’s TS-x64 and TS-x53E systems, including the TS-264, TS-464, and TS-664, are now over three years old, and while still supported, they increasingly feel dated in comparison to more recent offerings. At the same time, competition has intensified with new entrants such as UGREEN, Minisforum and Aoostar, which has gained traction in the NAS sector with aggressive pricing and updated hardware designs, underlining the demand for innovation. Against this backdrop, the Qu405, Qu605, and Qu805 arrive as QNAP’s latest response, bringing updated architecture, refined airflow and thermal design, modernised connectivity, and versatile system features to a market that is both more competitive and more demanding than before.

QNAP Qu405, Qu605 and Qu805 NAS Hardware Specifications

The Qu405, Qu605, and Qu805 are built around the latest Intel processors, with each model available in two distinct variants. The high-performance option uses the Intel Core 3 N355, an eight-core processor with a maximum turbo frequency of 3.9 GHz, paired with Intel UHD Graphics supporting 32 execution units. This CPU is part of Intel’s Twin Lake platform and offers a modest set of PCIe Gen3 lanes, sufficient for supporting dual 2.5GbE controllers, two M.2 NVMe slots, and other onboard I/O. The Lite models, intended for users with lighter requirements or stricter budgets, adopt the Intel N150 quad-core processor running at up to 3.6 GHz, paired with a reduced integrated graphics configuration and fewer available PCIe lanes overall. Both CPU options support AES-NI hardware-accelerated encryption, ensuring data security is handled with minimal performance impact, while the choice between N355 and N150 provides a balance between performance scaling and affordability across the QuX05 range.

Model Qu405

Qu605

Qu805

Drive Bays 4 × 3.5″ SATA (hot-swappable, also supports 2.5″ SATA SSDs) 6 × 3.5″ SATA (hot-swappable, also supports 2.5″ SATA SSDs) 8 × 3.5″ SATA (hot-swappable, also supports 2.5″ SATA SSDs)
M.2 Slots 2 × M.2 2280 NVMe PCIe Gen3 ×1 2 × M.2 2280 NVMe PCIe Gen3 ×1 2 × M.2 2280 NVMe PCIe Gen3 ×1
CPU Options Intel® Core™ 3 N355 (8-core, up to 3.9 GHz) or Intel® N150 (4-core, 3.6 GHz) Intel® Core™ 3 N355 (8-core, up to 3.9 GHz) or Intel® N150 (4-core, 3.6 GHz) Intel® Core™ 3 N355 (8-core, up to 3.9 GHz) or Intel® N150 (4-core, 3.6 GHz)
Graphics Intel UHD Graphics (32 EU for N355, reduced EU for N150) Intel UHD Graphics (32 EU for N355, reduced EU for N150) Intel UHD Graphics (32 EU for N355, reduced EU for N150)
Memory DDR5 SODIMM: 8 GB or 16 GB (1 slot, max 16 GB) DDR5 SODIMM: 8 GB or 16 GB (1 slot, max 16 GB) DDR5 SODIMM: 8 GB or 16 GB (1 slot, max 16 GB)
Flash 8 GB eMMC NAND 8 GB eMMC NAND 8 GB eMMC NAND
Networking 2 × 2.5 GbE RJ45 (supports SMB Multichannel, Link Aggregation) 2 × 2.5 GbE RJ45 (supports SMB Multichannel, Link Aggregation) 2 × 2.5 GbE RJ45 (supports SMB Multichannel, Link Aggregation)
USB Ports 1 × USB 3.2 Gen2 Type-C (front, one-touch copy) + 2 × USB 3.2 Gen2 Type-A (rear) 1 × USB 3.2 Gen2 Type-C (front, one-touch copy) + 2 × USB 3.2 Gen2 Type-A (rear) 1 × USB 3.2 Gen2 Type-C (front, one-touch copy) + 2 × USB 3.2 Gen2 Type-A (rear)
HDMI 1 × HDMI (2.0 or 2.1 depending on SKU, up to 4K 60 Hz) 1 × HDMI (2.0 or 2.1 depending on SKU, up to 4K 60 Hz) 1 × HDMI (2.0 or 2.1 depending on SKU, up to 4K 60 Hz)
Cooling Redesigned airflow with improved heat dissipation Redesigned airflow with improved heat dissipation Redesigned airflow with improved heat dissipation
Power Supply 96 W external adapter, typical ~63 W under load 120 W external adapter, typical ~84 W under load 150 W external adapter, typical ~103 W under load
Dimensions 165 × 217 × 168 mm 165 × 217 × 226 mm 165 × 217 × 285 mm
Weight Net 2.15 kg / Gross 4.1 kg Net 2.52 kg / Gross 4.82 kg Net 3.1 kg / Gross 5.7 kg
Operating System QTS or QuTS hero (ZFS-based, supports inline deduplication, compression, snapshots) QTS or QuTS hero (ZFS-based, supports inline deduplication, compression, snapshots) QTS or QuTS hero (ZFS-based, supports inline deduplication, compression, snapshots)
Other Features AES-NI encryption, hot-swap support, RAID protection, QuFirewall, 2FA, Malware Remover, Qsirch/Qfiling AI search, QuMagie photo AI, QVR Pro with 8 free camera channels Same as Qu405 Same as Qu405
Ports Image

Memory is standardised across the series, with all three devices supporting DDR5 SODIMM modules operating at up to 4800 MHz. SKUs are available with either 8 GB or 16 GB preinstalled, and although only a single memory slot is provided, limiting maximum capacity to 16 GB, the use of DDR5 brings notable improvements in throughput and responsiveness compared to the DDR4 used in older generations. The memory arrangement also highlights the target audience of the QuX05 series: home and SMB users who need fast but manageable workloads rather than large-scale enterprise deployments that require extensive memory pools. The systems also include 8 GB of onboard eMMC NAND for essential system functions, ensuring that firmware and OS-level features remain responsive even during heavy storage activity. Unlike some higher-end SMB-focused NAS devices, there is no dedicated PCIe expansion slot for upgrades such as 10GbE, HBAs, or GPU cards. This omission is likely linked to the reduced lane count of the N150 and N355 processors, which restricts available bandwidth for add-in cards. Instead, QNAP has chosen to distribute available lanes across built-in features such as dual 2.5GbE ports and dual NVMe slots, a trade-off that prioritises out-of-the-box functionality over modular expansion.

Storage options are one of the main areas where the QuX05 series differentiates itself by bay count. The Qu405 provides four 3.5-inch SATA bays, the Qu605 six, and the Qu805 eight, with each also capable of accommodating 2.5-inch SATA SSDs for flexible configurations. All bays support hot-swapping, allowing drives to be replaced without shutting down the system. Alongside the main drive bays, every model includes two M.2 2280 NVMe slots running at PCIe Gen3 x1. While not offering the bandwidth of Gen3 x4 or Gen4, these slots are sufficient for cache acceleration or tiered storage, with QNAP’s Qtier software automatically balancing frequently accessed files between SSDs and hard drives. This approach provides both capacity and performance, especially for environments that mix multimedia storage with frequent small file access.

Connectivity is consistent across all three models. Networking is based on dual 2.5GbE RJ45 ports, supporting link aggregation for bandwidth scaling and redundancy as well as SMB Multichannel for improved multi-session performance. Local I/O includes two USB 3.2 Gen2 Type-A ports at the rear, a front-facing USB 3.2 Gen2 Type-C port with one-touch copy, and HDMI output capable of 4K at 60 Hz. Most SKUs list HDMI 2.1, while some Lite versions list HDMI 2.0, so capabilities vary depending on configuration. Power requirements scale with chassis size, from a 96 W adapter for the Qu405, to 120 W for the Qu605, and 150 W for the Qu805, with reported average consumption under full drive load measured at approximately 63 W, 84 W, and 103 W respectively. Additional features include system buzzers for hardware alerts, Kensington lock slots for physical security, and redesigned airflow systems that improve cooling efficiency compared to older QNAP mid-range hardware. Together, these specifications establish the QuX05 series as a modernised platform that balances capacity, performance, and power efficiency across three scalable sizes.

Comparison Between the QuX05 Series and TS-x64 & TS-x53E Series

The arrival of the QuX05 range marks a generational update in QNAP’s mid-tier NAS catalog, directly inviting comparison with the company’s established TS-x64 series (TS-264, TS-464, TS-664) and the TS-x53E line (TS-253E, TS-453E). While the older models remain capable and still receive firmware updates, they are now over three years old and show their age in several areas. The TS-x64 units rely on Intel Celeron N5095/N5105 processors, DDR4 memory, and single 1GbE networking as standard, with expansion slots required for faster networking or NVMe storage. The TS-x53E series, launched in 2022, provided an alternative path with dual 2.5GbE ports and built-in M.2 NVMe slots, though they were capped at DDR4 memory and lacked PCIe upgrade slots, restricting long-term flexibility. In contrast, the QuX05 systems use Intel’s newer N355 and N150 processors, move to DDR5 memory, and integrate features such as dual 2.5GbE, NVMe SSD caching, and HDMI 4K output directly into the base platform, reducing the reliance on add-in cards or optional upgrades.

 

Another major distinction lies in how QNAP has approached expandability. The TS-x64 devices maintain a traditional PCIe slot for upgrades such as 10GbE networking or storage accelerators, something absent from both the QuX05 and TS-x53E series. In the QuX05 range, the limited PCIe lanes of the chosen Intel processors have been redistributed to provide onboard dual NVMe slots and dual 2.5GbE networking, effectively prioritising out-of-the-box functionality over modular expansion. For many home users and SMBs, this built-in approach is practical, but for environments needing high-speed networking or specialised PCIe hardware, the TS-x64 remains more adaptable. Overall, the QuX05 line represents QNAP’s attempt to modernise its mainstream desktop NAS range by integrating features previously seen only in higher-end or expansion-reliant models, offering a balance of performance, efficiency, and simplified setup against the backdrop of older but more expandable TS systems.

Feature / Model QuX05 Series (Qu405 / Qu605 / Qu805)

TS-x64 Series (TS-264 / TS-464 / TS-664)

TS-x53E Series (TS-253E / TS-453E)

CPU Intel Core 3 N355 (8-core, up to 3.9 GHz) or N150 (4-core, up to 3.6 GHz) Intel Celeron N5095/N5105 (4-core, up to 2.9 GHz) Intel Celeron J6412 (4-core, up to 2.6 GHz)
Memory DDR5 SODIMM, 8 GB or 16 GB, single slot (max 16 GB) DDR4 SODIMM, up to 16 GB (dual-slot) 8 GB DDR4 onboard, not expandable
Network Interfaces Dual 2.5 GbE built-in with SMB Multichannel and Port Trunking Single 1 GbE standard, PCIe upgrade needed for 2.5/10 GbE Dual 2.5 GbE built-in
Drive Bays (SATA 3.5″) Qu405:4 Qu605:6 Qu805:8, hot-swappable
M.2 NVMe Slots 2 × M.2 PCIe Gen3 x1 slots built-in Requires optional PCIe card 2 × M.2 PCIe Gen3 x2 built-in
Ports
PCIe Expansion Slot None (lanes redirected to onboard features) 1 PCIe slot for network/storage cards None
USB Connectivity USB 3.2 Gen2: 1 front Type-C (one-touch), 2 rear Type-A USB 3.2 Gen1 ports, front/rear, no one-touch copy USB 3.2 Gen2 Type-A ports
HDMI Output HDMI 2.0/2.1, 4K60 depending on SKU HDMI 2.0 or none (model dependent) Dual HDMI 1.4b, 4K30
Cooling / Design Redesigned airflow and thermal efficiency Traditional chassis design Traditional chassis design
Power Consumption (Typical) Qu405 ~63 W; Qu605 ~84 W; Qu805 ~103 W (fully populated) TS-464 ~44 W, TS-664 ~70 W (approximate) TS-453E ~36 W typical

QNAP Qu405, Qu605 and Qu805 NAS

Early reports from Eastern markets suggest that QNAP intends to position the QuX05 series at a highly competitive level, targeting the same price bracket traditionally occupied by mid-range consumer and SMB NAS devices. Instead of focusing on premium pricing, QNAP appears to be bundling enterprise-class features such as DDR5 memory, dual 2.5GbE connectivity, and built-in NVMe caching into systems expected to fall within the reach of prosumers and small studios. This approach contrasts with past strategies where certain features were locked behind higher-end models or optional expansion cards. The Qu405 and Qu605 are anticipated to scale more affordably due to their lower bay counts, while the Qu805 represents the higher-capacity option. All systems ship with QNAP’s standard two-year warranty, with the option to extend coverage to five years, which remains an important consideration for business users seeking predictable long-term support. Early indications also point to launch bundles or promotional packages, including potential accessories or service benefits, underlining QNAP’s intention to add value in a market that has become crowded with alternatives from newer NAS vendors.

In terms of release timing, the Qu405, Qu605, and Qu805 have already been introduced to the Eastern region, with wider international distribution expected before the close of 2025. Based on QNAP’s established release cycle, this typically means North American and European availability will follow within one or two months of the initial rollout. The timing reflects both market demand and competitive pressure, as the TS-x64 and TS-x53E families are now over three years old, and users have been increasingly vocal about the need for refreshed hardware. With rival solutions from UGREEN, Asustor, and other consumer-oriented NAS makers gaining attention, QNAP’s scheduling suggests an urgency to reassert its role in the mainstream NAS segment. The QuX05 series therefore not only modernises QNAP’s desktop lineup but also aims to arrive quickly enough to counter competing releases, ensuring it remains a viable choice for prosumers, creative teams, and small business deployments into 2026 and beyond.

Feature / Model QuX05 Series (Qu405 / Qu605 / Qu805)

TS-x64 Series (TS-264 / TS-464 / TS-664)

TS-x53E Series (TS-253E / TS-453E)

Check Amazon
Check AliExpress
Check B&H

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

 

Test du Synology DS225+

Par : Fx
9 septembre 2025 à 07:00
test ds225 - Test du Synology DS225+

Disponible depuis fin juillet, le Synology DS225+ fait beaucoup parler de lui. Ce nouveau NAS 2 baies marque un tournant stratégique pour le constructeur, notamment en matière de compatibilité matérielle et de positionnement produit. Nous l’avons testé en détail pour vous donner un avis complet…

test ds225 - Test du Synology DS225+

Test Synology DS225+

La nouvelle gamme DSx25+ de Synology suscite de nombreux débats. Le fabricant a ajouté une restriction de taille sur l’utilisation exclusive de ses disques durs et SSD. Ce dernier met en avant la qualité et la stabilité de ses produits et promet la certification future d’autres disques… On en reparle un peu plus loin. Enfin, cette nouvelle série apporte (enfin) le réseau 2,5 Gb/s.

Contenu de la boîte

Commençons par découvrir le contenu de la boîte :

  • Le DS225+ en lui-même ;
  • 2 câble réseau RJ45 ;
  • L’alimentation externe et son câble ;
  • Des vis pour les SSD ;
  • Un QR code renvoyant vers le manuel en ligne ;
  • Un livret sur la garantie/conformité.

Construction du NAS et design

Le design du DS225+ reste fidèle à la tradition Synology. Nous sommes en présence d’un boîtier compact en plastique noir, robuste, pesant environ 1,3 kg et mesurant 165 x 108 x 232,2 mm. À l’arrière, on retrouve un ventilateur de 92 mm, assurant la circulation de l’air dans le boitier. Le fabricant annonce seulement 19,6 dB…

arriere DS225 - Test du Synology DS225+

Installation du NAS

L’installation des disques durs se fait sans outil, mais un tournevis est requis pour les SSD SATA. Pas d’évolution de ce côté : c’est simple, rapide et efficace.

Compatibilité des disques et SSD

Synology impose désormais l’utilisation de ses disques durs et SSD (voir notre article). Le fabricant met en avant la stabilité, la qualité et la garantie d’un fonctionnement optimal, tout en promettant la certification future de modèles tiers. Pour l’instant, seuls les disques Synology figurent officiellement sur la liste de compatibilité.

Concrètement, qu’est-ce que cela veut dire (lire notre dossier) :

  • En migration depuis un ancien NAS, vos volumes sont reconnus, mais Synology recommande de remplacer vos disques ;
  • En nouvelle installation, impossible de créer un volume avec des disques non Synology ;
  • Les SSD d’autres marques fonctionnent, mais des avertissements s’affichent pour inciter à les remplacer.

Il reste une solution pour passer outre ces messages d’alerte : utiliser le script 007revad. Ce dernier permet de faire reconnaître les disques tiers. Synology tolère encore cette méthode, mais l’assistance technique sera limitée en cas de problème.

Connectique

Le NAS dispose des interfaces de connexion suivantes :

  • 2 ports USB 3.0 Type-A (dont 1 à l’avant) ;
  • 1 port réseau 2,5 Gb/s ;
  • 1 port réseau 1 Gb/s.

Bonne nouvelle : Synology passe enfin au 2,5 Gb/s de série, alors que la concurrence le propose depuis 2019.

Intérieur du DS225+

Le DS225+ embarque un processeur Quad Core Intel Celeron J4125 cadencé à 2 GHz (jusqu’à 2,7 GHz en mode Burst) et dispose de 2 Go de RAM DDR4 (non ECC), extensibles jusqu’à 6 Go. C’est la même architecture que celle du DS224+. L’absence d’évolution de ce côté est plutôt regrettable… Toutefois, la présence d’un iGPU reste un vrai atout pour le transcodage vidéo avec Plex ou Jellyfin.

RAM DS225 - Test du Synology DS225+
emplacement pour la mémoire vive

Avec seulement 2 Go de RAM, le NAS est rapidement limité. Pour exploiter pleinement toutes ses fonctionnalités (conteneurs Docker, virtualisation, hébergement Web…), il faut ajouter 4 Go supplémentaires. Synology recommande sa propre barrette (D4NS01-4G), fiable mais chère. La Crucial CT4G4SFS8266, 3 fois moins coûteuse, est une alternative très appréciée.

DSM 7.2

Le DS225+ tourne sous DSM 7.2, la dernière version du système maison. Clair, complet et ergonomique, il reste aujourd’hui la référence du marché. Synology a clairement bâti son succès grâce à DSM : sécurité renforcée, interface intuitive, nombreuses applications pour particuliers comme professionnels. À ce jour, aucun concurrent ne propose une solution aussi aboutie.

DS925 DSM 7.2 - Test du Synology DS225+

Performances du DS225+

Dans la première partie des tests, nous allons évaluer les performances des transferts à travers un réseau 2,5 Gb/s (entre le NAS et des ordinateurs). Ensuite, nous regarderons les capacités du processeur, en analysant ses performances dans la virtualisation et le transcodage vidéo…

Vitesses dans les transferts

Depuis plusieurs années, nous avons mis en place un protocole de tests rigoureux fournissant des données fiables et comparables avec les performances des autres NAS. Pour cela, nous utilisons 4 applications de mesure différentes (2 sous macOS et 2 sous Windows) et réalisons en plus des transferts de fichiers de tailles variées dans les 2 sens (NAS -> Ordinateur puis Ordinateur -> NAS) :

  • Petites tailles : 100 fichiers de 500 Ko à 12 Mo (MP3, photos, documents Office)
  • Tailles moyennes : 30 fichiers de 12 à 350 Mo (DivX, images RAW, archives ZIP)
  • Fichiers volumineux : 10 fichiers avec une taille comprise entre 4 et 10 Go (MKV, ISO)

À la suite de ces tests, une moyenne des transferts est calculée et nous la représentons sous forme de graphiques exprimée en mégaoctets par seconde (Mo/s). Plus le nombre est élevé, plus le NAS est rapide. Pour notre évaluation du DS225+, nous avons configuré un premier volume avec 2 SSD SATA en RAID 0, puis en avec le chiffrement des données. Enfin, nous terminons avec 2 SSD en RAID 1.

RAID 0

DS225 RAID0 - Test du Synology DS225+

En RAID 0, le NAS peut bénéficier des meilleurs performances. On constate ici que le NAS n’a aucun mal à dépasser les 200 Mo/s en lecture et en écriture. Le fabricant annonce jusqu’ à 282 Mo/s en lecture et 217 Mo/s en écriture. Nous constatons qu’il est tout à fait possible de faire mieux en lecture…

RAID 0 + Crypt

DS225 RAID0 Crypt - Test du Synology DS225+

Avec le chiffrement des données, on constate une légère baisse des performances en écriture. Cependant, cela reste tout de même de bon niveau… surtout avec ce choix d’architecture.

RAID 1

DS225 RAID1 - Test du Synology DS225+

Synology montre encore une fois qu’il maitrise parfaitement sa plateforme offrant un très bon niveau en RAID 1. La perte en lecture/écriture dans cette configuration est minime comparé au RAID 0. Le fabricant est un des rares à offrir une telle stabilité…

Performances globales

Le DS225+ est l’un des derniers NAS à intégrer un processeur Intel avec iGPU, ce qui facilite le transcodage matériel des vidéos. Dans nos tests Plex/Jellyfin, il a lu sans problème 3 vidéos simultanées. Le NAS reste stable et ne souffre pas latence.

Le DS225+ n’a aucun souci avec Docker (et plusieurs conteneurs en simultanée). Toutefois, il faudra lui ajouter de la mémoire vive. Pour ce qui est de la virtualisation de machine, il faudra être moins exigeant. Si le NAS pourra faire tourner sans souci un machine sous Linux (ex : Debian, Ubuntu), il aura plus de difficulté avec Windows 11. Entendons nous bien, c’est tout à fait faisable… mais nous vous le déconseillons.

Consommation électrique et nuisance sonore

Le DS225+ est un NAS vraiment silencieux. Pour l’entendre, il faut tendre l’oreille et se trouver à moins de 2 mètres. Avec deux SSD installés, la consommation électrique n’est que de 6 W en utilisation normale. Non, ce n’est pas une erreur frappe : on est bien sur 6 watts. Même en cas de forte charge, elle ne dépasse pas 12 W, ce qui reste très faible pour un appareil de cette catégorie.

CONCLUSION
Le Synology DS225+ n’apporte pas de rupture technologique par rapport à ses prédécesseurs, mais il s’impose comme un NAS 2 baies performant (notamment grâce au 2,5 Gb/s), discret et fiable. Grâce à son iGPU intégré, il se démarque pour les usages multimédias, comme le transcodage vidéo avec Plex ou Jellyfin, tout en restant économe en énergie et quasiment inaudible en fonctionnement. Le principal point faible de ce modèle reste la politique de compatibilité restrictive de Synology, qui limite l’utilisation aux disques durs et SSD de la marque. Une contrainte qui pourrait freiner les utilisateurs recherchant plus de liberté dans le choix de leur matériel. Enfin, si vous envisagez de vous équiper du DS225+, nous vous conseillons vivement d’ajouter 4 Go de RAM pour atteindre un total de 6 Go. Ce petit investissement supplémentaire permet de profiter pleinement de toutes ses fonctionnalités avancées : virtualisation, conteneurisation, hébergement web ou encore streaming multimédia fluide. Le DS225+ est un bon choix pour qui cherche un NAS polyvalent et silencieux... mais est-ce qu'il n'arrive pas trop tard ?
MATÉRIEL / DESIGN
6
OS & APPLICATIONS
9.5
PERFORMANCES
7.5
PRIX
7
7.5

Mise à jour NAS : pourquoi et comment sécuriser vos données

Par : Fx
5 septembre 2025 à 07:00
update NAS 2025 - Mise à jour NAS : pourquoi et comment sécuriser vos données

Récemment, plusieurs alertes de sécurité ont été remontées par les principaux fabricants de NAS. Même si rien n’indique que ces failles aient été exploitées, il est fortement recommandé d’appliquer les mises à jour disponibles pour le système… et les applications ! Mais que faire lors le constructeur ne fait pas d’effort ? Il existe des solutions.

update NAS 2025 - Mise à jour NAS : pourquoi et comment sécuriser vos données

Pourquoi et comment mettre à jour son NAS ?

Vous le savez certainement (mais il est toujours bon de le rappeler), maintenir son NAS à jour est essentiel pour assurer sa sécurité. La sauvegarde régulière des données est primordiale, mais l’installation des mises à jour du système et des applications permet de corriger des failles de sécurité potentielles.

Les fabricants publient régulièrement des mises à jour, parfois pour ajouter de nouvelles fonctionnalités, mais aussi pour combler des vulnérabilités. Pour les applications (natives ou de sources tierces), c’est la même chose…

Note : si vous utilisez Docker, pensez également à mettre à jour vos images et conteneurs 😉

Les risques liés aux failles de sécurité

Ces derniers mois, plusieurs vulnérabilités ont été découvertes et corrigées par les constructeurs. Leur exploitation pourrait avoir des conséquences sérieuses :

  • Élévation de privilèges ;
  • Exécution de code arbitraire ;
  • Vol de données ;

Certaines failles sont classées critiques. Il faut donc mettre à jour votre NAS ! Bonne nouvelle, ces correctifs sont gratuits. Il serait dommage de s’en priver.

Quand installer une mise à jour ?

Toutes les mises à jour ne se valent pas. Voici quelques recommandations :

  • Mises à jour critiques : appliquez-les rapidement, idéalement dans les 48 heures. Attendre permet de s’assurer qu’aucun bug majeur n’a été signalé… mais n’attendez jamais plus d’une semaine si votre NAS est accessible depuis Internet.
  • Mises à jour mineures (compatibilité avec de nouveaux SSD, améliorations visuelles…) : vous pouvez patienter plusieurs jours avant de les installer.

Note : on n’oublie pas de faire des sauvegardes régulièrement 🙂

Que faire si votre NAS n’est plus mis à jour ?

Lorsqu’une faille est détectée, les fabricants publient rapidement un correctif pour la dernière version du système (DSM, QTS, ADM…). Malheureusement pour les anciennes versions, cela peut-être très long… voire ils ne sont jamais mis à jour.

Si votre NAS contient des données sensibles (et c’est presque toujours le cas), voici quelques mesures à adopter si aucune mise à jour de sécurité n’est proposée :

  • Ne l’exposez pas directement à Internet : désactivez la possibilité d’accéder au NAS depuis Internet ;
  • Restez informé : consultez régulièrement les sites des constructeurs, les portails spécialisés comme Cachem ou Forum des NAS, ainsi que les réseaux sociaux ;
  • Contactez le support du fabricant : signalez le problème afin d’encourager une correction.

Note : si vous devez absolument accéder à vos données à distance, mettez en place un serveur VPN (WireGuard, OpenVPN…) sur un périphérique tiers : routeur/box, Raspberry Pi, mini-PC… mais pas sur le NAS.

En synthèse

La mise à jour régulière de votre NAS et de ses applications est une nécessité pour prévenir les risques de sécurité. Cependant, toutes les failles ne sont pas liées à une exposition en ligne. Nous vous recommandons de limiter l’accès direct depuis Internet à votre NAS.

Enfin, une veille active est indispensable pour rester informer des correctifs et des recommandations en matière de sécurité. Un NAS non mis à jour peut devenir une cible facile. Faites les mises à jour régulièrement !

WHY Synology Changed Support of 3rd Party Hard Drives in DSM?

Par : Rob Andrews
3 septembre 2025 à 18:00

Is there a good reason for Synology to change the support of “Unverified Drives” in DSM?

Synology has long been regarded as one of the most user-friendly and reliable NAS brands in the market, balancing intuitive software with a wide hardware range that appeals to both home and business users. However, in recent years the company has taken an increasingly controversial path by enforcing strict compatibility requirements for hard drives and SSDs. Beginning with DSM 7 and escalating into the 2025 generation of devices, Synology now only certifies and supports its own branded storage media, effectively locking out many widely used alternatives from Seagate, Western Digital, and Toshiba. While Synology positions this move as a way to ensure system stability and consistency, the decision has sparked significant backlash among users who feel restricted in their options and burdened by higher costs. As competitors expand their ecosystems with more openness and flexibility, this proprietary approach risks damaging Synology’s reputation, raising questions about whether the company has prioritized profit margins over user choice.

What is the MAIN PROBLEM(s) with this decision by Synology?

The most immediate problem with Synology’s hard drive policy is the loss of flexibility that once made their systems so appealing. For years, customers could select from a wide range of industry-standard drives from Seagate, Western Digital, or Toshiba, tailoring storage to their budget, performance requirements, or regional availability. This freedom not only allowed users to balance cost and capacity, but also gave small businesses and home enthusiasts the ability to reuse existing drives, upgrade incrementally, or take advantage of promotions from different vendors. By restricting DSM compatibility to Synology-labelled drives, that flexibility is gone. For many users outside major markets, Synology’s drives are harder to source, priced higher than the competition, or limited in available capacities. What once felt like an open platform now increasingly resembles a closed ecosystem, where users must accept the vendor’s terms even if it means compromising on affordability or performance.

Another dimension of the problem lies in how Synology has communicated these changes, which many see as evasive or disingenuous. Officially, the company justifies the restriction as a move toward greater reliability and predictable system performance. The argument is that by narrowing the range of drives tested and supported, Synology can optimize DSM to work seamlessly with drives that have firmware tailored for its environment. In practice, though, the same underlying hardware often originates from Seagate or Toshiba, with only minor firmware adjustments and new branding. This creates a perception that Synology is overstating the technical benefits while quietly using the policy to secure higher margins. For long-time users, the contrast is stark: older models happily ran third-party drives with few issues, which makes the sudden insistence on “certification” seem less like an engineering requirement and more like a business maneuver. The result has been a significant erosion of trust between the company and its community.

The wider impact of this strategy has also been felt across the storage industry. Resellers have reported declining sales of Synology’s Plus series devices as customers explore alternatives such as QNAP, TrueNAS, or newer entrants like UGREEN and UniFi. For Synology, this shift is particularly damaging because its reputation has historically rested on attracting less technical buyers who value simplicity and reliability over DIY solutions. Now, even these entry-level and mid-range users are questioning whether they should commit to an ecosystem that limits their choice of drives and increases their costs. At the same time, hard drive manufacturers like Seagate and Western Digital are also affected, as Synology’s decision reduces the number of channels through which their products reach end customers. The ripple effect is therefore twofold: Synology risks alienating its base of loyal customers, while storage vendors lose a once-reliable partner, creating tension that could ultimately push more buyers toward competing NAS brands.

How Can Synology Solve This (if they want to)?

One path forward for Synology would be to adopt a hybrid compatibility model, where its own branded drives remain the recommended or default choice but third-party alternatives are still officially supported. This compromise has been proven by other vendors such as UniFi and QNAP, who sell their own labelled drives while maintaining compatibility lists for major manufacturers like Seagate, Western Digital, and Toshiba. By following this model, Synology could continue promoting the reliability benefits of its branded hardware without alienating customers who prefer flexibility. In practice, this would preserve a sense of choice for users while ensuring Synology can still highlight its “optimized” solutions as the safer, supported route.

 

A second solution would be to introduce explicit user consent during setup in DSM. Instead of blocking unsupported drives outright, Synology could warn users with a clear message that their chosen media is not on the verified list and may not receive full technical support. The responsibility then shifts to the user, who can decide whether to prioritize cost savings, capacity, or specific models over guaranteed compatibility. This would align Synology’s policy more closely with customer expectations while protecting the company from liability. It would also help reduce reliance on unofficial modification scripts, which have become increasingly popular but operate outside of Synology’s oversight.

 

Finally, Synology could address the availability and pricing concerns around its own branded drives. In many regions, these drives are either difficult to source or significantly more expensive than equivalent Seagate or Western Digital models. Improving distribution channels, ensuring consistent stock, and narrowing the price gap would make the transition more palatable to users who are willing to adopt Synology’s ecosystem but feel penalized by limited access. By focusing on accessibility and fairness rather than exclusivity, Synology could rebuild goodwill while still driving revenue from its hardware strategy. Taken together, these steps would not fully reverse the controversy but would demonstrate responsiveness and provide a clearer path to balancing stability, customer choice, and profitability.

Is there a way to FORCE a Synology NAS to accept unverified Hard Drives and SSDs in DSM?

For users unwilling to accept Synology’s restrictive stance on storage media, the community has developed reliable workarounds that re-enable full functionality for third-party hard drives and SSDs. The most widely adopted method involves injecting a script into the NAS system that bypasses DSM’s compatibility database, allowing otherwise unsupported drives to be used for installation, storage pools, caching, and expansion. Synology’s 2025 Plus-series models, such as the DS925+, block DSM installation if only unverified drives are present and issue constant warnings in Storage Manager. To overcome this, users first employ a Telnet-based flag during initial setup that tricks DSM into accepting the installation, followed by a more permanent fix applied through SSH. At the heart of this solution is Dave Russell’s (007revad) GitHub project Synology_HDD_db, which modifies DSM’s internal drive compatibility files. Once downloaded and executed via SSH, the script detects the NAS model, DSM version, and connected drives, then patches the system to treat them as officially supported.

The process is reversible, non-destructive, and works across multiple DSM versions, including DSM 7.2 and later. Additional features allow removal of persistent warning banners, full use of NVMe drives as storage volumes, and optional disabling of intrusive monitoring services like WDDA. To ensure ongoing stability, users can also configure a scheduled task in DSM’s Task Scheduler that re-applies the script at every boot, guaranteeing compatibility survives updates, reboots, or new drive insertions. While the script is robust and actively maintained, there are clear disclaimers: using it involves modifying system files, may void official Synology support, and should only be attempted by users confident with SSH and terminal commands who have reliable data backups. Nonetheless, for advanced users, system integrators, and enthusiasts, this community-driven solution has become the de facto method of restoring the freedom to use affordable and widely available third-party drives in modern Synology NAS systems.

Example of a 30TB Seagate HDD visible and functioning inside a Synology DS925+

Note – You can follow my guide on how to use this script modification (as well as outlining the pros and cons) HERE on the blog, or watch the video below:

The Future of Synology in the eyes of new and old buyers?

Synology’s decision to enforce exclusive support for its own branded hard drives and SSDs marks one of the most controversial shifts in the company’s history, transforming how both long-time customers and potential buyers view the brand. For over a decade, Synology’s appeal rested on a combination of intuitive software, solid hardware, and flexibility in allowing users to choose their own storage media from trusted vendors like Seagate, Toshiba, and Western Digital. By removing that choice in the 2025 generation, Synology has fundamentally altered the value proposition of its systems, making them appear less like open storage platforms and more like tightly controlled appliances. While the company justifies the policy by citing stability, predictability, and reduced support overhead, many users interpret it as a profit-driven attempt to push proprietary drives into the market, especially since these are often rebranded versions of third-party disks with modified firmware and higher price tags.

The backlash has been considerable, with resellers and community forums reporting falling interest in Synology’s Plus-series devices, particularly among home and small business users who previously embraced them for affordability and ease of expansion. Competing NAS providers such as QNAP, TrueNAS, UGREEN, and UniFi have been quick to capitalize on the discontent, positioning themselves as more open alternatives that maintain compatibility with industry-standard drives. At the same time, the growth of unofficial solutions like Dave Russell’s compatibility script demonstrates how determined users are to regain control over their hardware, even at the risk of voiding warranty or stepping outside official support. This dynamic reflects a widening gap between Synology’s official direction and the needs of its customer base, many of whom would prefer to accept a disclaimer about using unverified drives rather than being forced into a closed ecosystem.

Ultimately, Synology now stands at a crossroads that will define its reputation in the storage industry for years to come. If it continues to double down on a closed, proprietary model, the company may secure short-term revenue through drive sales but risks long-term damage to its image and market share. On the other hand, reintroducing a more flexible, transparent approach—such as allowing user consent for unsupported drives or improving global pricing and availability of its own disks—could restore trust and preserve its standing as the NAS brand of choice for both novices and professionals. The availability of community workarounds ensures that frustrated users are not entirely locked out of their systems, but the very existence of these tools highlights how far Synology has drifted from its once customer-first ethos. The next few years will be crucial, as the company either adjusts course and strikes a balance between profitability and user freedom, or risks ceding ground to rivals who are eager to embrace the openness Synology has chosen to leave behind.

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Super Budget 6 Port 10GbE Managed Switch Review (Is AliExpress Worth it?)

Par : Rob Andrews
1 septembre 2025 à 18:00

Does this Budget $140 AliExpress 10GbE Switch Deserve Your Data?

The landscape of 10 Gigabit Ethernet networking has seen a significant shift over the past few years, with hardware that was once considered enterprise-only gradually trickling down to the consumer and prosumer market. Affordable multi-gig switches, particularly those with 2.5G or SFP-only configurations, are now commonplace. However, the search becomes much more complicated when you’re looking for a compact, budget-friendly 10GbE switch that combines both RJ45 copper and SFP+ fiber ports — and adds basic managed features to the mix. This is precisely where the Goodtop 6-Port 10GbE Managed Switch positions itself, offering four 10GBase-T ports, two SFP+ ports, and a claimed 120Gbps backplane bandwidth, all for around $140 on AliExpress.

At this price point, it’s important to approach products like this with realistic expectations. The Goodtop switch is not aiming to compete with the likes of Cisco, Aruba, or even MikroTik in terms of long-term support or security posture. Like many white-label or lesser-known brands shipping out of China, concerns around firmware transparency, update frequency, and potential vulnerabilities are valid. This is particularly relevant for users planning to expose management interfaces to external networks or integrate these switches into larger, more sensitive environments. Still, for isolated use in lab setups, home networks, or behind firewall-protected infrastructure, devices like this can offer compelling value — if they deliver on core functionality. This review takes a closer look at the Goodtop switch’s physical design, port configuration, internal hardware, software interface, and performance characteristics. Rather than focusing on theoretical specs alone, this analysis is based on hands-on testing to determine where the unit succeeds, where it cuts corners, and what kind of buyer it’s realistically suited for.

Goodtop Budget 6 Port 10GbE Switch Review – Quick Conclusion

The Goodtop 6-Port 10GbE Managed Switch delivers impressive value by combining four 10GBase-T and two 10G SFP+ ports in a compact, low-cost form factor, making it one of the most affordable mixed-media 10GbE switches on the market. It performs reliably under load, supports a full set of essential Layer 2 features like VLANs, link aggregation, and QoS, and provides a practical way for home lab users or small setups to adopt 10G networking without overspending. However, the switch’s low price is reflected in its build quality, fixed-speed noisy fan, and a barebones, unintuitive web interface that may challenge less experienced users. Security features are minimal, with no HTTPS, 2FA, or multi-user support, making it best suited for isolated, firewall-protected environments rather than critical infrastructure. For technically confident users seeking affordable, high-speed connectivity in a controlled setting, the Goodtop switch is a capable and cost-effective option—as long as its limitations are clearly understood.

Need a Budget 10GbE Switch? RECOMMENDED TO BUY:

Goodtop Budget 6 Port 10GbE Switch Review – Design

The Goodtop 6-Port 10GbE switch adopts a compact footprint and minimalist industrial design that aligns with many of the budget-friendly networking products emerging from OEMs in the Chinese market. Its chassis measures 200mm x 118mm x 44mm and is constructed from a thin, painted sheet metal. At just under 700 grams, the device is easy to handle and unobtrusive on a desk or shelf. It supports both desktop placement and wall mounting, the latter made possible by a pair of hook points integrated into the casing. While the construction is adequate for light to moderate use, it doesn’t offer the heft or rigidity seen in more enterprise-leaning gear.

There are no rubber feet to reduce surface vibration, nor any rack-mounting ears included by default. The paint finish is clean but basic, and minor flexing of the panels is possible under moderate pressure. These design choices reflect an emphasis on affordability rather than robustness, and users intending to deploy this switch in harsher physical environments may want to consider added enclosure or structural reinforcement. Still, for indoor use where vibration and temperature control are consistent, the physical form is entirely serviceable.

Thermal management is handled by a single small-diameter fan mounted laterally inside the chassis, supported by perforated ventilation cutouts on the opposing side. This active cooling setup is necessary given the heat output of the internal 10GbE components, particularly when all ports are under load.

During testing, the fan proved effective in maintaining safe thermal levels across typical workloads, with internal temperature readings ranging between 31°C and 36°C depending on ambient conditions and port usage. However, the fan’s acoustic characteristics are worth noting: it operates at a fixed RPM, regardless of system temperature or network activity.

This results in a constant hum that registers between 38 and 41 dBA — not excessive, but certainly noticeable in quiet environments. There are no accessible fan speed controls in the management interface, and the unit lacks thermal sensors or thresholds that would allow for adaptive fan curves.

For users operating this switch in a studio, home office, or any acoustically sensitive environment, the persistent fan noise could be a drawback. Modifications, such as third-party silent fan replacements, may be feasible but would require disassembly and some DIY effort. Overall, the cooling solution works, but its implementation is clearly a compromise between function and cost.

Goodtop Budget 6 Port 10GbE Switch Review – Hardware & Connections

The Goodtop switch is equipped with a total of six 10-Gigabit-capable ports, split between four RJ45 (10GBase-T) and two SFP+ slots. This particular configuration is uncommon at this price tier, especially among switches that offer web-based management. The inclusion of both copper and fiber interfaces in one device provides flexibility for mixed network environments — ideal for users bridging legacy copper infrastructure with newer fiber deployments or integrating NAS devices and uplinks with varying interface standards. All six ports are located on the front panel, clearly labeled and spaced far enough apart to accommodate bulkier cables and transceivers without interference.

The RJ45 ports support standard multi-gig Ethernet protocols, with backward compatibility for 100Mb, 1G, 2.5G, and 5GBase-T connections, depending on cabling. According to the manufacturer’s specs, Cat6 or better is recommended for full 10GBase-T performance up to 100 meters.

The SFP+ ports accept a wide range of 10G transceivers, including DACs (Direct Attach Copper), SR/LR fiber modules, and media converters, offering strong compatibility with third-party optics and hardware.

Despite its low cost, the switch claims a 120Gbps backplane switching capacity and a non-blocking architecture capable of 89.28 million packets per second. While exact benchmarking under full simultaneous port saturation wasn’t possible due to hardware limitations during testing, four concurrent 10GBase-T connections were tested successfully with sustained bidirectional transfers.

Under load, the unit handled transmission reliably without packet loss or obvious performance degradation. Power consumption scales with usage: idle draw sits at approximately 7.5 watts with no connected clients, while active use with four 10G copper links under sustained read/write activity peaked around 19.8 watts.

These values are in line with expectations for a full-10G switch operating with active cooling, and while not low, they are acceptable for most desktop or lab environments. It’s worth noting that due to heat generation and airflow limitations, users may experience rising internal temperatures if all six ports are driven continuously, especially in poorly ventilated setups. However, the flexibility to use either media type and the stable throughput on tested ports suggest that the internal switching logic and port handling are effectively implemented, given the device’s pricing and market position.

Internally, the Goodtop 6-Port 10GbE switch is built around a Realtek chipset configuration comprising the RTL9303 switch controller and RTL8264B PHYs, a pairing commonly found in recent budget and white-label 10G networking products. These components are designed to deliver basic Layer 2 managed functionality with support for VLAN tagging, link aggregation, and other expected switching features. Two medium-sized aluminum heatsinks cover the main chips, with thermal paste applied to ensure contact and heat dissipation, albeit passively reliant on the unit’s single fan for airflow. There is no internal battery backup, surge suppression beyond nominal protection, or modular power regulation — design choices consistent with its low cost.

The unit includes a modest 12Mbit of packet buffer memory and supports a MAC address table size of up to 16K entries, which should be sufficient for most small-to-medium environments. There are no removable components or visible debugging headers, and the board layout is straightforward with no major thermal bottlenecks observed during operation. Overall, the hardware design is minimal but appropriate for the target use case: non-critical environments requiring inexpensive multi-gig connectivity without expectations of advanced redundancy or hardware resilience. While it doesn’t compete with enterprise-class internals in terms of engineering quality or extensibility, it does reflect a competent implementation of entry-level switching silicon with functional thermal management.

Goodtop Budget 6 Port 10GbE Switch Review – Software

The Goodtop switch ships with a built-in web-based management interface that allows users to configure a range of Layer 2 features typical of entry-level managed switches. The interface is accessible via a browser once an IP address is assigned, and no additional software is required. However, the overall presentation and usability of the software are quite basic. The UI lacks visual polish, contextual help, or guided configuration tools. Navigation is functional but unintuitive, with much of the terminology and layout appearing generic and unbranded — a likely result of the firmware being repurposed from a reference design or OEM platform.

There are no wizards or safety prompts to prevent misconfiguration, which could make the switch challenging for less experienced users to manage safely. Additionally, there is no mobile optimization or official companion app, and the interface does not support HTTPS out of the box. Firmware updates are possible via the web console, though update channels or changelogs are not provided, and documentation is sparse.

Despite its limited interface design, the switch includes a solid range of features that are normally found in more expensive units. These include core Layer 2 controls and essential traffic management capabilities, offering flexibility for VLAN segmentation, link aggregation, and network troubleshooting. While these features are mostly geared toward technical users, they cover a surprisingly broad spectrum of functionality for a switch in this price bracket. However, it’s worth noting that the interface offers no access controls beyond a single user account, no two-factor authentication, and no role-based access — all of which may concern users deploying this switch in sensitive or multi-user environments. Fan speed control, system logs, or SNMP monitoring are also absent, limiting the unit’s viability for more advanced administrative needs. Key supported features include:

  • VLAN support (802.1Q, VLAN IDs 1–4094)

  • Port-based VLAN assignment

  • Link Aggregation (LACP)

  • Loop detection

  • Jumbo frame support (up to 9K bytes)

  • MAC address filtering

  • Port mirroring

  • Broadcast storm control

  • QoS / Port-based priority settings

  • Traffic statistics monitoring

  • Basic firmware upgrade support

These tools are adequate for static network environments or those with fixed segmentation needs, but administrators seeking dynamic configuration, remote logging, or integration with monitoring platforms will find the software lacking in depth.

Goodtop Budget 6 Port 10GbE Switch Review – Verdict and Conclusion

The Goodtop 6-Port 10GbE Managed Switch offers an appealing combination of features that are rarely found together in a product at this price point. With four 10GBase-T copper ports and two 10G SFP+ fiber slots, it caters to users who need to bridge different media types without investing in multiple specialized devices. The unit delivers consistent throughput, a practical management interface, and baseline Layer 2 capabilities suitable for most small-scale, static deployments. For those building or expanding home labs, adding high-speed links between servers and NAS devices, or testing 10GbE equipment without committing to enterprise-level budgets, this switch is a very practical and accessible option. The price tag — typically hovering between $130 and $140 — is particularly compelling when compared with similar switches from established brands, which often cost two to three times as much while offering fewer ports or omitting management functionality.

However, it’s important to understand what trade-offs make that low cost possible. Physically, the unit is built with budget-grade materials, and although the compact design is functional, the thin metal chassis lacks the rigidity and passive cooling features seen in more expensive models. The inclusion of active cooling is necessary given the switch’s full 10GbE capability, but the fixed-speed fan results in a persistent acoustic presence that may not be acceptable in quiet workspaces. In terms of power usage and thermal output, the switch performs within expectations, though it naturally draws more power than multi-gig or 1G devices — something to consider if operating in environments sensitive to power efficiency or heat buildup.

On the software side, the web-based management interface includes a reasonably full feature set for configuring VLANs, link aggregation, QoS, and port monitoring, but the UI is visually dated, lacking intuitive navigation, helpful prompts, or contextual explanations. For seasoned users comfortable with networking terminology and manual configuration, this isn’t a major obstacle. However, newcomers may find the software overwhelming or difficult to use without external guidance. Security is another area where the switch shows its limitations. The absence of HTTPS access, multi-user management, or basic features like two-factor authentication limits its suitability for exposed or multi-tenant environments. Firmware updates are possible, but no public update path or official support channels are offered, making long-term update viability uncertain.

Ultimately, this is a product built around value — and that value is real, as long as buyers know what they’re getting into. The Goodtop switch does not pretend to be a polished enterprise-grade solution, nor does it offer the ecosystem integration or long-term support found in more expensive alternatives. Instead, it provides raw functionality: six full-speed 10GbE ports, a working management layer, and compatibility with a wide range of copper and optical transceivers. For environments that are self-contained, technically managed, and not security-critical, this device offers performance that aligns well with its low cost. For those willing to make small compromises on build quality and user experience, it’s an excellent option for extending 10G connectivity without overspending.

 

Need a Budget 10GbE Switch? RECOMMENDED TO BUY:
PROS CONS
  • Affordable price point (~$140) for a full 10GbE managed switch

  • Mixed media support with 4 x 10GBase-T and 2 x 10G SFP+ ports

  • Compact, wall-mountable design suitable for home labs or tight setups

  • Functional web-based management with core Layer 2 features

  • Reliable throughput under multi-port 10G load without packet loss

  • Active cooling maintains safe temperatures during sustained use

  • Broad compatibility with copper and fiber transceivers and cables

  • Constant 38–41 dBA fan noise; no fan speed control

  • Basic, unrefined software UI with a steep learning curve

  • No HTTPS, user roles, or 2FA; lacks advanced security controls. Overall security concerns.

  • Thin metal casing and lightweight construction feel budget-grade

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Synology DS425+ NAS Review

Par : Rob Andrews
25 août 2025 à 18:00

 Synology DS425+ Review – Should You Buy This NAS?

The Synology DS425+ is a 4-bay NAS system launched in mid-2025 as part of the company’s continued refresh of its Plus Series product line, replacing the DS423+. It is designed to serve home power users, creative professionals, and small business environments that require a balance of reliable storage, streamlined software integration, and modest multimedia capabilities. The unit retains a familiar chassis and architecture, featuring the Intel Celeron J4125 quad-core processor (2.0 GHz base, 2.7 GHz burst) with integrated graphics support, 2GB of soldered DDR4 memory (expandable up to 6GB with an additional 4GB Synology module), and two M.2 NVMe slots intended primarily for SSD caching using Synology-verified drives.

Alongside this hardware, the DS425+ runs DSM 7.2 and includes the full suite of Synology services, such as Active Backup, Surveillance Station, Virtual Machine Manager, Synology Drive, and Hybrid RAID (SHR) support. Network connectivity is handled by a single 2.5GbE and a 1GbE port, while two USB 3.2 Gen 1 ports enable external storage or UPS integration. Despite minimal hardware changes over its predecessor, the DS425+ demonstrates Synology’s continued focus on efficiency, low noise output, and energy-conscious operation—important factors for users planning to run a 24/7 NAS. However, these choices also reflect broader changes in Synology’s platform strategy that may not suit every user, especially those seeking higher flexibility or modern internal specifications.

SOFTWARE - 10/10
HARDWARE - 4/10
PERFORMANCE - 6/10
PRICE - 6/10
VALUE - 7/10


6.6
PROS
👍🏻DSM 7.2 Operating System: Offers a rich suite of first-party apps including Active Backup, Surveillance Station, Synology Drive, and Hyper Backup with strong cross-platform support.
👍🏻Low Noise and Power Consumption: Quiet 92mm fan setup and efficient power usage (~28W under load) make it ideal for 24/7 operation in home or office environments.
👍🏻Integrated Graphics (Intel UHD 600): Supports light Plex or Jellyfin hardware transcoding for 1080p media, a rare inclusion in Synology’s 2025 lineup.
👍🏻Compact and Versatile Design: Small chassis with 4 SATA bays and 2 M.2 NVMe slots for cache acceleration, supporting RAID 5/6 and SHR.
👍🏻Strong Security Posture: Includes 2FA, SSL, VPN tools, and a proactive PSIRT vulnerability disclosure program for ongoing protection.
👍🏻Good Thermal Management: Maintains stable drive and system temperatures (~32–35°C) even under moderate load.
👍🏻Broad Software Ecosystem: Additional apps like Synology Photos, Chat, Office, and Drive make it a multi-functional NAS beyond just storage.
CONS
👎🏻Strict Drive Compatibility: Requires Synology-only HDDs and SSDs for full functionality; third-party drives trigger warnings or are blocked entirely.
👎🏻Outdated CPU Platform: Uses a 2019-era Intel J4125 CPU, now underpowered compared to newer Intel N-series or AMD embedded chips.
👎🏻Memory Upgrade Limitations: Comes with 2GB soldered RAM, upgradeable to only 6GB total, and officially supports Synology-branded memory only.
👎🏻Limited Connectivity and I/O: No PCIe, eSATA, or SD card support; only one 2.5GbE and two 5Gbps USB ports—lagging behind competitors in 2025.


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

Synology DS425+ NAS

Amazon in Your Region for the Synology DS425+ NAS @ $519

B&H for the Synology DS425+ NAS @ $519.99

DSM Software Ecosystem and Integration

One of the most compelling reasons to consider the DS425+ is its support for Synology’s DiskStation Manager (DSM), a mature and highly integrated NAS operating system. DSM 7.2, which comes preinstalled, offers a unified and consistent user experience with a wide range of built-in applications tailored for home users, remote workers, and small office setups. Core tools like Active Backup for Business allow centralized backup of entire operating systems, folders, and virtual machines, making the DS425+ useful as a bare-metal recovery or disaster recovery node. Hyper Backup enables encrypted, versioned backups to local, remote, or cloud destinations, while tools like Snapshot Replication provide rapid rollbacks and protection against ransomware.

Synology also offers sector-specific solutions through packages like Surveillance Station and Virtual Machine Manager, the former allowing support for up to 40 cameras (with up to 800FPS at 1080p H.264), and the latter providing basic VM hosting for Linux and lightweight Windows workloads. These tools are tightly optimized for the hardware, with low overhead and accessible browser-based management. Furthermore, the DS425+ supports Synology Hybrid RAID (SHR), giving users more flexibility when mixing drive capacities and minimizing unused storage space compared to traditional RAID models.

DSM extends beyond simple storage management by including companion apps like Synology Photos, Drive, and Chat, all of which are compatible with Windows, macOS, Android, and iOS. The DS425+ integrates these tools with centralized user management, group permissions, and support for LDAP and Active Directory.

For users who value reliability, Synology’s proactive security strategy—including its public security advisories, pen-testing initiatives, and in-house incident response—adds extra confidence to the long-term stability and safety of the system. In many cases, users report that the simplicity and polish of DSM is what keeps them loyal to the Synology platform, even when hardware specifications appear modest.

Strict Drive Compatibility and Locked Storage Expansion

One of the most significant limitations of the DS425+ is its strict enforcement of Synology-only drive compatibility, particularly for both 3.5″ HDDs and M.2 NVMe SSDs. As of mid-2025, this model only allows full functionality when paired with Synology-branded drives, such as the HAT5300 series for hard disks or SNV3410/3510 for SSDs.

If users attempt to install non-Synology drives—even widely used options like Seagate IronWolf or WD Red—the system will either block the drives entirely or present warnings and restrict key functionality, such as RAID rebuild, hot spare assignment, or expansion. This policy represents a significant departure from Synology’s historically broader compatibility stance and has become a source of ongoing controversy among users and reviewers alike.

From a practical standpoint, this limitation can result in higher upfront costs, reduced flexibility in sourcing drives, and long-term concerns about availability and vendor lock-in. For example, Synology’s high-capacity enterprise HDDs are often difficult to find in retail channels and may be priced at a premium compared to similar offerings from Seagate or Toshiba.

Users migrating from older Synology systems who want to reuse perfectly functional drives may find themselves unable to do so, as the new system won’t allow proper array recovery or expansion unless all drives meet the strict compatibility criteria. While this approach enables Synology to tightly optimize performance and reliability, it effectively turns the DS425+ into a semi-proprietary ecosystem where even core storage components are vendor-restricted.

This is particularly frustrating for experienced NAS users who expect to mix and match drives or who run environments where hardware recycling and drive lifecycle management are critical. The decision also impacts future-proofing: users who want to grow their arrays over time must now ensure drive stock alignment with Synology’s approved list, which may change over time or vary by region. Despite DSM’s strengths, this hard stance on compatibility significantly undermines one of the key selling points of NAS platforms—modularity—and could be a dealbreaker for value-conscious users or those with existing disk investments.

Low Noise and Power Efficiency for 24/7 Use

Another advantage of the DS425+ lies in its energy-efficient and acoustically quiet design, which makes it highly suitable for constant operation in homes, studios, or office environments where noise and heat are critical considerations. Based on extended testing, the system consumes just 28.25W under access load and drops to as low as 6.10W in HDD hibernation, making it one of the more economical NAS units in its class when measured over long-term 24/7 usage.

Even when populated with four 4TB hard drives and placed under sustained load, real-world power draw rarely exceeded 44W during high CPU utilization. This is further aided by the relatively low thermal output, with ambient casing temperatures measured around 32°C and drive bays stabilizing at just 35°C under load.

In terms of acoustic performance, the DS425+ is equipped with two 92mm fans, and noise testing shows the system remains quiet enough for close-proximity deployment. In idle mode with the fans on their lowest profile, it registers a sound level between 36 to 38 dB(A), which increases only moderately under load or at medium fan speed. Even when the system was manually set to full fan speed with high drive activity, noise output peaked at 53 dB(A)—still manageable for most non-silent workspaces. This operational profile makes the DS425+ appealing to users seeking a low-maintenance NAS that can be discreetly placed in a shared room, office, or AV rack without introducing unwanted distraction or thermal buildup.

This power and noise behavior also helps prolong component lifespan, particularly in warmer climates or enclosed cabinets, and supports use cases like 24/7 media server operation, offsite backups, or even small-scale CCTV archiving. Importantly, despite these low operating figures, the DS425+ still maintains stability and consistent throughput thanks to the efficiency of the J4125 processor and DSM’s power-aware service management. These characteristics, often underappreciated in specs alone, make it especially suitable for those who want reliable long-term uptime without high energy costs or acoustic interference.

Memory Limitations and Unorthodox Upgrade Path

The DS425+ comes with 2GB of DDR4 memory soldered directly to the motherboard, which is low by 2025 standards even for entry-level NAS devices. While it includes an additional memory slot that allows for the installation of a single 4GB module, the system officially supports a maximum of just 6GB of total RAM. This is an unusual and restrictive configuration, especially when many modern NAS devices now ship with 4GB or 8GB by default, and support 16GB or more—sometimes with dual-channel configurations for better performance. Synology’s strict validation policy also means that only their branded RAM (e.g. D4NESO-2666-4G) is fully supported, and installing third-party modules can trigger warnings in DSM or potentially void support coverage.

This memory ceiling becomes problematic when running DSM features that scale with RAM usage, such as Synology Drive, Snapshot Replication, Virtual Machine Manager, or Surveillance Station. As observed during testing, the DS425+ routinely used 27–38% of its available memory at idle, even without third-party packages installed. This is largely due to DSM’s intelligent memory caching system, which improves performance but leaves little headroom for user-defined workloads. Once additional services or multimedia indexing tasks are introduced, memory utilization climbs quickly, increasing the risk of slowdowns, swap usage, or outright service failure under peak demand.

For users who intend to deploy containers, host multiple camera feeds, or run even a small number of VMs, this limitation may lead to bottlenecks sooner than expected. It also makes the DS425+ a less viable choice for future expansion or multi-user environments. Unlike other NAS brands that allow full third-party upgrade freedom—or systems with dual RAM slots and broader capacity support—Synology’s enforced limitations here represent another example of the platform’s increasingly locked-down approach. For a system marketed to prosumers, the inability to exceed 6GB RAM comfortably is a notable technical and strategic constraint.

Integrated Graphics for Light Media Transcoding

Unlike many NAS units in this price tier, the DS425+ includes an Intel Celeron J4125 processor with integrated Intel UHD Graphics 600, which unlocks hardware-accelerated video decoding and transcoding in supported applications like Plex or Jellyfin. This makes the DS425+ one of the few Synology models in 2025 that still offers integrated GPU support out of the box, especially as newer Synology models with more recent CPUs have increasingly omitted integrated graphics. While the DS425+ is not intended to replace a dedicated media server, its GPU can significantly improve performance and efficiency for on-the-fly transcoding of formats like H.264 and H.265 (HEVC), particularly when streaming to remote clients with bandwidth constraints.

In real-world usage scenarios, this means the DS425+ can handle direct streaming and limited transcoding of 1080p content without overwhelming the CPU, provided the source formats are within the GPU’s supported codec list. During Plex testing, the DS425+ performed adequately with one or two 1080p transcodes running simultaneously, and was also able to manage basic 4K downscaling if the codec was natively supported by the hardware. For home users who have mixed devices—such as smart TVs, mobile devices, and tablets that vary in codec support—the presence of hardware transcoding offers improved flexibility without requiring as much manual conversion or format standardization of their media library.

Additionally, Synology’s native multimedia applications such as Surveillance Station and Synology Photos also benefit from GPU acceleration, helping speed up thumbnail generation, indexing, and playback, especially for high-resolution image and video collections. While raw CPU power in the DS425+ is modest by 2025 standards, the inclusion of integrated graphics helps balance out performance for lightweight graphical workloads and makes the system more viable as a general-purpose media hub. For users considering a NAS for Plex, family media streaming, or small business content previews, this capability adds meaningful value—especially since few modern Synology NAS devices still include Intel-based chips with iGPU support.

Outdated CPU Platform and Limited Performance Headroom

The DS425+ ships with the Intel Celeron J4125, a 4-core, 4-thread processor that was originally launched in late 2019. While it offers modest performance and includes integrated graphics, the J4125 is now significantly behind modern alternatives in both efficiency and raw compute power. Intel itself has discontinued the Celeron branding entirely, moving toward newer architectures like Alder Lake-N and Jasper Lake, which offer improved IPC (instructions per cycle), higher core/thread counts, and better thermal efficiency—all while retaining low power consumption. In comparison, the J4125’s aging 14nm Gemini Lake architecture struggles with heavier multitasking, especially when running services like virtual machines, surveillance workloads, or multiple Docker containers in parallel.

Synology has retained this CPU across several generations of its 2- and 4-bay Plus series models, which makes the DS425+ feel less like a generational upgrade and more like a lateral move. During performance testing, the unit handled DSM core tasks and multimedia indexing smoothly, but CPU load increased sharply under heavier tasks such as simultaneous Surveillance Station streams, Hyper Backup routines, or basic VM instances.

Synology DS224+ NAS Memory

This limited headroom constrains the DS425+ to light-to-moderate workloads, and it can bottleneck more quickly than newer systems from other brands using more recent Intel N-series or AMD Ryzen Embedded CPUs. This is especially important as DSM continues to add new features that may increase background resource consumption over time.

Additionally, the CPU’s lack of support for modern instruction sets or features like AVX can limit compatibility with certain Docker containers or third-party applications that expect more recent hardware. While the DS425+ can serve well as a general-purpose file server or light media NAS, it’s not suited for users who anticipate growth into heavier mixed-use deployments. In a 2025 market where many similarly priced NAS units offer 6- or 8-core CPUs and PCIe Gen 3 or 4 support, the DS425+ feels constrained and unlikely to age well for users with evolving or expanding workloads.

Compact Form Factor with Versatile Storage Options

The DS425+ offers a space-efficient chassis design that houses four 3.5″/2.5″ SATA drive bays, along with two M.2 2280 NVMe SSD slots for caching. This provides a versatile platform for users who want flexible storage layouts without moving to a physically larger or more expensive rackmount or tower system.

The vertical orientation of the chassis, measuring just 166 x 199 x 223 mm, makes it easy to deploy the device in tight workspaces, shelving units, or beneath desks—ideal for small offices, home studios, or AV setups where space is at a premium. Despite its small footprint, the device retains full support for key RAID configurations including SHR, RAID 5/6/10, and JBOD, and offers hot-swappable access to the main drive bays for ease of maintenance.

The inclusion of two M.2 NVMe slots on the base of the unit allows users to improve performance through read/write caching without sacrificing primary drive bays. Although these M.2 slots are limited to Synology-verified SSDs and are not usable for storage pools, they can still offer significant boosts to random I/O performance in multi-user environments or when used with demanding workloads like Synology Drive or VM hosting. Combined with support for SSD TRIM and smart cache algorithms within DSM, the system can be tuned to optimize response times during high-access periods without introducing large amounts of memory overhead.

From a practical standpoint, this layout is beneficial for users managing multiple storage tiers, such as a mix of large-capacity HDDs for archiving and faster SSDs for active projects or virtual machines. Furthermore, the DS425+ supports volume expansion using larger capacity drives, RAID migration options (e.g. from Basic to RAID 5 or RAID 5 to RAID 6), and up to 32 internal volumes, giving users enough headroom for future scaling. These features, while standard in DSM, are fully supported in this chassis and make it easier to adapt the NAS as storage needs evolve—without the need to start from scratch or invest in a new enclosure.

Limited I/O and Underwhelming Connectivity for the Price

While the DS425+ introduces a 2.5GbE network port alongside a legacy 1GbE port, the rest of its I/O configuration is relatively limited and arguably outdated compared to competitors in its price range. The system includes just two USB 3.2 Gen 1 ports, both of which operate at 5Gbps rather than the more modern 10Gbps (Gen 2) speeds that are increasingly common in 2025. There is no SD card slot, no eSATA or PCIe expansion slot, and no HDMI output, all of which are features now appearing on rival NAS systems from QNAP, TerraMaster, and UGREEN—even at similar or lower price points. These omissions restrict how the device can be expanded or integrated into more complex workflows, such as direct-attached backup targets, external GPU support, or quick media ingestion.

The presence of only a single 2.5GbE port also imposes a bottleneck for users wanting to make full use of SSD caching or high-throughput RAID configurations. There is no support for link aggregation, as the 1GbE and 2.5GbE ports cannot be bonded in a meaningful way, and the system lacks support for 5GbE or 10GbE—either onboard or via expansion. In scenarios where large video files, virtual machine images, or multiple users are simultaneously accessing data, the NAS may become network-bound more quickly than other models with multi-GbE or SFP+ connectivity.

Furthermore, while DSM offers support for USB peripherals such as external drives and UPS devices, the limited port count and bandwidth mean there is little headroom for simultaneous external expansions, and the brand limits the support of USB peripherals for security reasons. For example, attaching both an external drive and a USB-connected UPS may require unplugging one to rotate in another device. This may not impact casual home users, but for power users managing workflows like video editing, offsite rotation backups, or multi-location file sync, this level of I/O flexibility feels dated. When factoring in the DS425+’s pricing, which places it near many NAS models with more expansive I/O, this minimalism can be a significant drawback.

Strong Security Framework and Proactive Vulnerability Management

The DS425+ benefits from Synology’s broader emphasis on security, offering a robust framework for data protection, secure remote access, and proactive threat mitigation. DSM includes built-in tools such as firewall rules, auto-blocking of suspicious IPs, HTTPS configuration, and native integration with Let’s Encrypt for SSL certificates. Two-factor authentication (2FA) can be enforced per user or globally, and built-in VPN server options (including OpenVPN and L2TP/IPSec) provide secure tunnels for remote workers or offsite access. For businesses or power users hosting sensitive data, the inclusion of AES-NI hardware encryption ensures efficient at-rest protection without drastically impacting system performance.

What sets Synology apart is its ongoing commitment to security research and response. The company operates a public-facing Product Security Incident Response Team (PSIRT) and regularly updates a detailed security advisory page disclosing vulnerabilities and their mitigations. Synology also participates in Pwn2Own, a white-hat hacking competition, and runs internal bug bounty programs to uncover and patch exploits before they are discovered in the wild. This culture of transparency and preemptive action is especially valuable as NAS devices become more frequently targeted by malware and ransomware threats, particularly those exposed to the internet or used in hybrid cloud workflows.

Additionally, many DSM apps include granular permission management, audit logs, and user-based access rules, giving administrators tight control over file shares, backup targets, and service access. Synology’s Hybrid Share and Cloud Sync tools support end-to-end encryption and offer options to decouple cloud storage keys from the local system, further strengthening data sovereignty. For users concerned with long-term viability and platform trust, Synology’s structured and well-documented security practices help the DS425+ stand out against competitors that may offer more hardware but less attention to software and infrastructure hardening. This makes it a viable choice for users prioritizing data safety in either personal or professional contexts.

Questionable Long-Term Value Amid Shifting Synology Strategy

Another concern with the DS425+ is its position within Synology’s evolving product strategy, which raises questions about long-term support and ecosystem focus. Synology has recently been expanding its BeeStation and BeeStation Plus lines—pre-populated, user-friendly NAS solutions that share similar hardware (in some cases, the same J4125 CPU), but are bundled with drives and offer a simplified DSM variant tailored for general consumers. These systems, while more limited in scope, are marketed as turnkey alternatives with lower pricing and fewer user-configurable components. The DS425+, by contrast, sits awkwardly between Synology’s increasingly restrictive hardware requirements and the emerging shift toward closed, fully managed platforms.

This change in trajectory creates uncertainty for prospective buyers looking for a long-term investment. If Synology continues prioritizing its proprietary hardware and software pairings, users who prefer modularity, drive freedom, or advanced customization may find themselves increasingly constrained. As already noted, the DS425+ enforces tight compatibility rules, limits memory expansion, and restricts NVMe usage to caching only. At the same time, Synology is streamlining its portfolio around devices with even stricter limitations but more mass-market appeal. This raises the possibility that traditional “Plus” models like the DS425+ may be sidelined or see fewer feature updates in future DSM releases, as Synology shifts development toward more controlled environments.

From a cost perspective, the DS425+ is priced around $519, placing it uncomfortably close to more powerful third-party NAS systems that offer better CPUs, more RAM, and greater I/O flexibility. Competing brands frequently offer 4-bay systems with modern N-series Intel processors or embedded AMD chips, 8GB+ of memory, and faster networking, often for the same or lower price. As a result, the DS425+ risks being outclassed not only by its competition, but by Synology’s own growing lineup of prepackaged solutions. Users investing in the DS425+ today may find themselves limited not just by current specs, but by an ecosystem slowly drifting away from the prosumer and enthusiast segment this model was originally meant to serve.

Synology DS425+ NAS Review – Conclusion and Verdict

The Synology DS425+ presents a mixed proposition in 2025. On one hand, it remains a competent 4-bay NAS solution for users prioritizing software integration, low power operation, and quiet, reliable 24/7 usage. Its support for DSM 7.2 and the full suite of Synology applications—ranging from Active Backup to Surveillance Station and Synology Drive—makes it a strong turnkey platform for general-purpose storage, backup, and multimedia needs. Integrated graphics give it an edge in light media streaming scenarios, and its support for M.2 NVMe caching allows for performance optimization without occupying drive bays. It’s a well-built device that continues to “just work,” particularly in home and small office setups where reliability, simplicity, and refined software matter more than raw horsepower.

However, these strengths are increasingly offset by hardware limitations and Synology’s increasingly restrictive ecosystem. The soldered 2GB of RAM, locked 6GB memory ceiling, outdated CPU, limited I/O, and especially the enforced use of Synology-only drives all hinder flexibility and long-term value. When compared to similarly priced alternatives from competing NAS vendors—many of which offer newer processors, faster ports, and full hardware freedom—the DS425+ can feel constrained and overpriced. In addition, Synology’s expanding focus on pre-populated BeeStation devices suggests a possible shift away from traditional DIY-friendly models like this one. For users who are already invested in the Synology ecosystem or who value DSM above all else, the DS425+ may still be a worthwhile buy. But for those seeking hardware scalability, third-party compatibility, or better price-to-performance, it may be worth considering other options or waiting to see how Synology’s roadmap evolves.

Synology DS425+ NAS

Amazon in Your Region for the Synology DS425+ NAS @ $519

B&H for the Synology DS425+ NAS @ $519.99

Synology DS425+ NAS Pros Synology DS425+ NAS Cons
  • DSM 7.2 Operating System: Offers a rich suite of first-party apps including Active Backup, Surveillance Station, Synology Drive, and Hyper Backup with strong cross-platform support.

  • Low Noise and Power Consumption: Quiet 92mm fan setup and efficient power usage (~28W under load) make it ideal for 24/7 operation in home or office environments.

  • Integrated Graphics (Intel UHD 600): Supports light Plex or Jellyfin hardware transcoding for 1080p media, a rare inclusion in Synology’s 2025 lineup.

  • Compact and Versatile Design: Small chassis with 4 SATA bays and 2 M.2 NVMe slots for cache acceleration, supporting RAID 5/6 and SHR.

  • Strong Security Posture: Includes 2FA, SSL, VPN tools, and a proactive PSIRT vulnerability disclosure program for ongoing protection.

  • Good Thermal Management: Maintains stable drive and system temperatures (~32–35°C) even under moderate load.

  • Broad Software Ecosystem: Additional apps like Synology Photos, Chat, Office, and Drive make it a multi-functional NAS beyond just storage.

  • Strict Drive Compatibility: Requires Synology-only HDDs and SSDs for full functionality; third-party drives trigger warnings or are blocked entirely.

  • Outdated CPU Platform: Uses a 2019-era Intel J4125 CPU, now underpowered compared to newer Intel N-series or AMD embedded chips.

  • Memory Upgrade Limitations: Comes with 2GB soldered RAM, upgradeable to only 6GB total, and officially supports Synology-branded memory only.

  • Limited Connectivity and I/O: No PCIe, eSATA, or SD card support; only one 2.5GbE and two 5Gbps USB ports—lagging behind competitors in 2025.

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Syncthing 2.0 : Synchronisation sécurisée sur NAS et PC

Par : Fx
25 août 2025 à 07:00
cloud securiser cadenas - Syncthing 2.0 : Synchronisation sécurisée sur NAS et PC

Syncthing est un logiciel open source qui permet de synchroniser des fichiers entre plusieurs appareils (ordinateurs, NAS, smartphones, etc.). Contrairement aux Clouds propriétaires, les données restent stockées sur vos propres appareils. La sortie de Syncthing 2.0 marque une étape importante et apporte de nombreuses améliorations… aussi bien pour les particuliers que pour les administrateurs de NAS.

Syncthing 2.0

Quoi de neuf dans Syncthing 2.0 ?

Pour rappel, Syncthing est particulièrement intéressant pour ceux qui possèdent un NAS. En effet, le logiciel offre une synchronisation chiffrée, sécurisée et automatique… avec un contrôle total des données. C’est une solution idéale pour les particuliers et professionnels qui veulent bénéficier du confort du Cloud sans dépendre d’un fournisseur externe.

La sortie de Syncthing 2.0 marque un tournant technique, tout en maintenant la compatibilité protocolaire avec la branche 1.x. Voici les principaux changements :

  • Migration vers SQLite : la base de données interne passe de LevelDB à SQLite, gage de fiabilité et de maintenance simplifiée.
  • Journalisation améliorée : logs structurés, nouveau niveau de sévérité WARNING et configuration plus fine par paquet.
  • Performances réseau optimisées : ouverture de plusieurs connexions simultanées entre pairs, réduisant les blocages lors des transferts volumineux.
  • Gestion des fichiers supprimés : rétention par défaut limitée à 15 mois, avec possibilité d’ajustement.
  • Évolutions pratiques : suppression du dossier par défaut au premier démarrage, rationalisation des options en ligne de commande, fin de la prise en charge de certaines plateformes mineures.

Syncthing 2.0.3 : la version actuelle

Au moment d’écrire ces lignes, la version la plus récente est Syncthing 2.0.3. Elle corrige plusieurs points de jeunesse :

  • retour de l’option –version,
  • amélioration de la migration des bases volumineuses,
  • nettoyage automatique d’anciens dossiers au démarrage.

Faut-il mettre à jour vers Syncthing 2.0 ?

La réponse est oui, mais avec précaution. Avant de migrer, il est recommandé de sauvegarder le répertoire de configuration et de prévoir un temps au système… surtout si votre base de données est importante. La compatibilité avec la version 1.x permet une transition progressive, appareil par appareil.

En synthèse

Avec Syncthing 2.0, l’outil gagne en fiabilité et en performances sans remettre en cause ses fondamentaux : une synchronisation sécurisée, décentralisée et respectueuse de la vie privée. Pour les utilisateurs de NAS comme pour les adeptes de l’auto-hébergement, cette mise à jour constitue une évolution solide et durable.

GMKTec G9 Ver.2 NAS Review – Cooler Now?

Par : Rob Andrews
22 août 2025 à 18:00

GMKTec G9 NAS (New Improved Cooling Version) Review

Important – My original review of the GMKTec G9 NAS in it’s original design can be found HERE on YouTube and HERE on the NASCompares blog.

The GMKTec G9 NucBox NAS has re-emerged in mid-2025 with a revised cooling design, following a wave of thermal criticism directed at the original release earlier in the year. Still marketed as an SSD-only NAS aimed at home and small office environments, the G9 maintains its core identity—a compact enclosure powered by Intel’s N150 quad-core processor, soldered LPDDR5 memory, and four M.2 NVMe SSD bays. The G9’s primary appeal continues to be its affordability, silent operation, and dual-use flexibility as both a NAS and lightweight desktop system, thanks to the inclusion of Windows 11 Pro and Ubuntu out of the box. However, early buyers and reviewers, including this channel, highlighted persistent thermal issues affecting SSD performance and overall system reliability under load, leading to thermal throttling even during idle states in warmer environments.

In response, GMKTec has issued an updated version of the G9 that retains the same form factor, internal hardware, and I/O but incorporates enhanced passive ventilation on the side and top panels. Though subtle at first glance, these structural changes are designed to improve airflow over the CPU and SSD compartments without increasing noise levels or power draw. In this updated review, we will revisit all aspects of the G9’s design, connectivity, and system behaviour under continuous load, while highlighting what exactly has changed and what remains untouched. The new G9 model introduces targeted thermal improvements, but beyond ventilation, it leaves the original architecture and feature set entirely intact.

GMKTec G9 Ver.2 NAS Review – Quick Conclusion

The improved GMKTec G9 NAS represents a targeted refinement rather than a full redesign, addressing the primary weakness of the original model: inadequate thermal performance. The updated version introduces enlarged ventilation cutouts on the top panel above the CPU fan and replaces the pinhole rear exhaust with a wider mesh, leading to measurable but modest reductions in system temperatures. In 48-hour test scenarios using UnRAID with hourly backup tasks, SSDs without heatsinks in the original unit reached idle temperatures of 66–67°C, while the revised model brought this down to 56–57°C. CPU vent temperatures similarly dropped from 54–56°C to 50–52°C, and rear I/O areas cooled by 5–7°C. These improvements enhance stability during sustained I/O activity but do not eliminate the need for additional SSD cooling—particularly in environments where ambient heat or multi-user access is expected. Internally, the hardware remains unchanged: Intel N150 CPU, 12GB of non-upgradable LPDDR5 memory, four PCIe Gen 3 x2 M.2 NVMe bays, and dual 2.5GbE ports, with storage and network throughput consistent with entry-level expectations. Power consumption remains efficient (19–30W), and noise levels stay low at under 40dB, making it suitable for always-on deployment. However, the continued use of a plastic chassis and base panel still limits effective heat dissipation, and the absence of thermal sensors or fan curve controls further limits its thermal adaptability. Compared to the Xyber Hydra—featuring a metal base, better SSD thermal contact, and 16GB RAM—the G9 now performs better than before but still falls short of what its hardware could achieve with more thoughtful engineering. For users willing to invest in SSD heatsinks and mindful of its limitations, the G9 is now a reasonably balanced entry NAS, though not the strongest performer in its tier.

BUILD QUALITY - 6/10
HARDWARE - 7/10
PERFORMANCE - 6/10
PRICE - 10/10
VALUE - 9/10


7.6
PROS
👍🏻Affordable price point for a 4-bay NVMe NAS with dual 2.5GbE (typically under $200).
👍🏻Support for up to 32TB of SSD storage across four M.2 NVMe slots.
👍🏻Low power consumption (19W idle, ~30W under load) suitable for 24/7 operation.
👍🏻Improved passive airflow design compared to the original model (lower overall temps).
👍🏻Dual USB-C power input options for flexible cable management.
👍🏻Silent operation, even during sustained activity (under 40dB).
👍🏻Pre-installed OS (Windows 11 Pro and Ubuntu) allows for flexible initial use.
👍🏻Compact, space-saving enclosure ideal for desktop setups or constrained environments.
CONS
👎🏻Cooling Improvements are relatively small and No bundled SSD heatsinks, making thermal throttling likely without aftermarket cooling.
👎🏻Non-upgradable 12GB LPDDR5 RAM limits scalability for heavier workloads.
👎🏻Plastic chassis and base panel still hinder full thermal dissipation from SSDs.
👎🏻The Introduction of other NAS such as the Beelink ME Mini and Xyber Hydra has provided appealing alternatives to this device right now

Where to Buy?

GMKTec G9 Ver.2 NAS Review – Design and Storage

The GMKTec G9 continues to use a compact, matte-black plastic chassis that is closer in design to a mini PC enclosure than a traditional NAS. The vertical design conserves desk space, and the front-facing panel remains clean and understated, with no visible drive trays or status indicators beyond the power button and basic branding. As with the original model, the chassis sacrifices the durability and thermal advantages of metal in favour of a lightweight, cost-efficient build. This makes the device appealing for users with space constraints, but it also signals the system’s budget positioning. The plastic enclosure, while solid enough for day-to-day use, is not especially resistant to heat buildup during sustained I/O operations, which remains one of its most persistent limitations.

Internally, the system supports four M.2 NVMe SSDs, each connected via PCIe Gen 3 x2 lanes. This setup allows up to 32TB of total SSD storage, assuming the use of high-capacity 8TB NVMe drives. The use of SSDs rather than traditional 2.5″ or 3.5″ hard drives enables near-silent operation, faster access times, and lower power consumption. However, SSD-only NAS designs like this one typically require better airflow and heatsinking to mitigate thermal throttling—especially during RAID operations or when used as a media server with multiple concurrent reads and writes. The G9 supports basic RAID via third-party NAS OSs, but due to PCIe lane limitations and lack of onboard RAID management, advanced configurations will rely entirely on software.

One of the primary complaints in the original model was the absence of SSD heatsinks and the system’s poor natural heat dissipation. While pre-built units from GMKTec occasionally shipped with low-profile aluminum heatsinks, user-added drives often ran hot, especially under sustained write loads. The M.2 slots sit stacked vertically inside a cramped compartment behind the lower rear panel, and when combined with a sealed plastic baseplate, heat quickly accumulates. This design still persists in the new version, and although airflow has been improved through the external vents, the interior thermal behaviour remains heavily dependent on user-supplied heatsinks and ambient cooling conditions. Users deploying high-endurance SSDs or running frequent write-intensive tasks will need to factor this into their thermal strategy.

The internal layout is efficient but fixed. There are no modular trays or hot-swap capabilities for the SSDs, and all upgrades must be performed by opening the device. Memory is soldered and therefore non-upgradable, and while there’s internal eMMC storage used for the pre-installed OS, most users will opt to install TrueNAS, UnRAID, or OpenMediaVault onto one of the NVMe drives for full NAS functionality. The passive cooling approach is unchanged in its core design: two internal fans (one for CPU, one system) move air through the case, but without direct thermal contact to the SSDs or a conductive enclosure material, this airflow has limited reach. Placement of the unit in a well-ventilated space remains essential.

The only real physical design changes in the new version are to the external ventilation panels. GMKTec has replaced the original pinhole-style vent on the rear side with a wider mesh grille, which now spans a greater portion of the side panel. Additionally, the top panel has been revised to include a broader cutout directly above the CPU fan, allowing a clearer exhaust path for rising hot air. However, the plastic base and internal heat chamber structure remain unchanged, meaning SSD temperatures are still a potential concern—especially without aftermarket cooling. The updated G9 retains the same core storage architecture as the original, but introduces modest improvements to airflow via enhanced external ventilation.

GMKTec G9 Ver.2 NAS Review – Internal Hardware

At the center of the GMKTec G9 is the Intel N150 processor, a quad-core, four-thread CPU built on the 10nm Twice Lake architecture. Designed for ultra-efficient computing, it operates at a modest 6W TDP, making it ideal for passive or semi-passive cooling environments like compact NAS systems. The N150 runs at a 1.0GHz base frequency and boosts up to 3.6GHz under load, delivering just enough headroom for tasks like SMB/NFS sharing, low-volume web hosting, and basic media playback. Its integrated Intel UHD Graphics support up to 4K at 60Hz output via HDMI or USB-C DisplayPort alt mode, though without hardware acceleration for modern codecs like AV1, its suitability for on-the-fly transcoding is limited. The CPU also lacks advanced server-grade features like ECC memory support, SR-IOV, or high-bandwidth PCIe 4.0 lanes, which reflects its role in cost-conscious, entry-level applications.

The onboard 12GB of LPDDR5-4800 memory is soldered and cannot be replaced or upgraded, a design choice that simplifies manufacturing and keeps costs down but limits versatility in heavier multitasking scenarios. In practice, the memory is sufficient for running one or two lightweight NAS services alongside file sharing, or even a basic Docker container or two, but its soldered configuration leaves no room for future expansion. Notably, the memory is dual-channel, which does help offset some performance constraints—especially in scenarios where the integrated graphics or CPU requires memory bandwidth access. While most users won’t hit the ceiling of 12GB under standard NAS tasks, advanced setups involving active sync with cloud platforms, large-scale Plex libraries, or multiple concurrent rsync/FTP sessions could find the limitation restrictive. Also, unlike some similarly priced competitors, there’s no accessible BIOS option to reserve RAM for cache acceleration, which could have improved responsiveness under heavier I/O loads.

In terms of storage hardware, the G9 offers four M.2 NVMe slots with PCIe Gen 3 x2 interfaces, a configuration that supports up to 32TB of total storage using current consumer-grade drives. Each slot is keyed for M-Key NVMe SSDs and arranged vertically inside the enclosure, though installation requires unscrewing the rear panel and working within the confined internal cavity. The system’s internal PCIe lane distribution is handled through multiple ASMedia ASM1182e switch chips, which divide the CPU’s limited PCIe bandwidth across all four NVMe slots and the dual 2.5GbE interfaces. While the Gen 3 x2 interface is technically capable of 2GB/s per slot, real-world speeds are often lower during concurrent access due to the shared architecture.

This design also limits SSD passthrough capabilities in virtualized environments, and users aiming for high-speed SSD RAID configurations (RAID 5 or 10, for example) may encounter inconsistent write speeds. Additionally, there is no hardware-level thermal throttling safeguard tied to fan curves or SSD temperature sensors, so thermal build-up under load could directly affect sustained throughput unless active cooling measures are installed. The internal hardware of the improved GMKTec G9 remains completely unchanged from the original release—no CPU, RAM, SSD slot layout, or controller chip has been altered in the updated version.

Component Details
CPU Intel N150 (4 Cores / 4 Threads, 1.0–3.6GHz)
Architecture Intel Twice Lake (10nm)
TDP 6W
Memory 12GB LPDDR5-4800 (Dual-channel, Non-upgradable)
Integrated Storage 64GB eMMC (for pre-installed Windows/Ubuntu)
NVMe Support 4 x M.2 NVMe SSDs (PCIe Gen 3 x2 interface)
Max Storage Up to 32TB (with 4 x 8TB drives)
Graphics Intel UHD (4K @ 60Hz via HDMI & USB-C DP)
PCIe Management ASMedia ASM1182e Switches (x2)
Other Features AES-NI, VT-x, VT-d, Speed Shift, ACPI 6.2

GMKTec G9 Ver.2 NAS Review – Ports and Connections

The GMKTec G9 offers a well-rounded I/O configuration that reflects its hybrid role as both a compact NAS and lightweight desktop appliance. It features two 2.5GbE LAN ports, both of which are directly linked to the CPU via PCIe lanes and can be configured for link aggregation, failover, or isolated network segments. In real-world testing, these ports easily saturate their 312MB/s bandwidth under SMB and iSCSI workloads, making the G9 more capable than traditional Gigabit NAS units. The absence of 10GbE is notable, especially for users planning to deploy NVMe RAID arrays or work in content-heavy environments, but at this price point and power envelope, dual 2.5GbE is still a competitive offering. Notably, both NICs support Wake-on-LAN (WoL), making the system convenient for remote access or low-power automation setups.

For peripheral and expansion support, the G9 includes three USB-A 3.2 Gen 2 ports and a single USB-C 3.2 Gen 2 port, each capable of 10Gbps data transfer. The USB-C port also supports DisplayPort Alt Mode, allowing it to function as an additional video output alongside the two HDMI 2.0 ports on the rear panel. These HDMI ports support 4K resolution at 60Hz and are positioned for users who may wish to operate the G9 as a silent desktop system or a local media playback device via Kodi, Jellyfin, or Plex. However, the G9 does not include USB 4.0, Thunderbolt, or PCIe expandability, limiting options for future upgrades such as external GPUs, additional NICs, or DAS enclosures. In testing, connected peripherals such as USB drives and webcams were recognized instantly under Ubuntu and Windows, confirming basic plug-and-play compatibility.

Power delivery is handled via USB-C PD input, using a 65W external power brick that ships with the unit. Uniquely, the updated G9 introduces a small but notable change: dual USB-C power input points, allowing users to select which side of the device receives the power cable. This change doesn’t increase power capacity or enable redundancy, but it can improve cable management depending on the G9’s orientation on a desk or shelf. However, using one of the USB-C ports for power inherently sacrifices a high-speed data port—an unfortunate trade-off given the unit’s lack of PCIe or expansion bays. No dedicated power switch is present; the unit powers on via the front button or Wake-on-LAN and remains always-on unless shut down via software or OS-level scripts. Compared with the original G9, the only change to I/O is the addition of the second USB-C power input for layout flexibility—otherwise, all ports, speeds, and layout remain the same.

Port Type Quantity Specification
2.5GbE LAN 2 Realtek RTL8125, Link Aggregation Supported
USB-A 3.2 Gen 2 3 10Gbps, Backward Compatible
USB-C 3.2 Gen 2 1 (+1 PD) 10Gbps, DisplayPort Alt Mode
HDMI 2.0 2 4K @ 60Hz
Power Input (USB-C) 2 65W USB-C PD (Only 1 used at a time)
Wake-on-LAN Supported Both NICs
Audio None No 3.5mm jack or digital out

GMKTec G9 Ver.2 NAS Review – Tests and Performance

In synthetic and real-world benchmarks, the GMKTec G9 delivers the level of performance expected from an Intel N150 system with PCIe Gen 3 x2 storage. Read speeds per drive peaked around 1.4–1.5GB/s, aligning well with the theoretical limit of the x2 interface. Write speeds were notably more volatile, ranging between 400–600MB/s depending on SSD type, ambient temperature, and active processes. These numbers, while adequate for file serving, backups, and Docker apps, showed clear limitations when the system was pushed into simultaneous multi-disk writes or parity-based RAID configurations. The presence of ASMedia ASM1182e PCIe switches likely contributes to this variance, as downstream PCIe allocation under pressure introduces contention among the SSD lanes. In typical NAS tasks like SMB and NFS file transfers, however, performance remained consistent and stable, particularly when network activity was confined to single-user access or sequential transfers.

Thermal behaviour is where the most scrutiny falls, given the G9’s original design flaws. Under a controlled 48-hour test using UnRAID with scheduled hourly backups and mixed-use read/write activity, the older G9 unit routinely idled at 54–56°C, with peaks of 66–67°C on SSDs lacking heatsinks.

The improved model saw modest thermal gains, with idle temps reduced to 50–52°C at the CPU vent and around 56–57°C on the SSD layer. Some of this improvement came from the revised ventilation—namely the expanded top-panel fan cutout and rear-side mesh panel—yet the base remained the same thermally isolated plastic panel, and internal fan hardware remained unchanged.

Notably, temperatures around the rear I/O ports dropped by 5–7°C between versions, suggesting that airflow efficiency around the motherboard has improved even if core thermal load remains a challenge.

In terms of noise and power, the G9 performs admirably. Even under load, fan noise remained below 40dB, with idle operation being nearly silent. Power consumption remained within the expected range—19–21W idle and up to 30W under continuous activity—even during the 48-hour write test.

BIOS-level tuning is possible and can slightly reduce power draw or adjust fan thresholds, but no advanced power scaling or fan curve customization is exposed via software in stock OS images. More demanding operating systems like TrueNAS Scale ran stably on the G9 but did little to mitigate thermal behaviour, reinforcing the importance of user-added SSD heatsinks regardless of OS.

The lack of thermal sensors per SSD slot or fan feedback control means sustained operations should be closely monitored in hotter climates or enclosed environments.

Nowhere is the conversation about thermal and hardware design more relevant than in comparison to the Xyber Hydra, a near-identical system that appears to share much of its component sourcing with the G9—right down to the GMK-branded fans. The Hydra ships with 16GB of DDR5 memory, a metal base panel, and most notably, a thermal pad that bridges SSDs to the metal shell, allowing for actual heat transfer rather than passive convection. In direct tests, the Hydra consistently posted 5–10°C lower SSD temps under identical workload, with idle SSDs (no heatsinks) registering around 47–49°C versus 56–57°C in the improved G9.

Though the Hydra lacks branding clarity around its manufacturer, the design appears to be what the G9 should have evolved into: same layout and CPU, but better thermals, more memory, and more thought put into SSD dissipation. In conclusion, while the improved GMKTec G9 offers better thermals than its predecessor, the Xyber Hydra outperforms both G9 variants in every thermal category, making it the superior choice if cooling and memory capacity are priorities.

Metric Original G9 Improved G9 Xyber Hydra
Peak Read Speed (NVMe) ~1.4–1.5 GB/s Same Same
Sustained Write Speed ~400–500 MB/s Slightly higher Slightly higher
Idle CPU Vent Temp 54–56°C 50–52°C 47–49°C
SSD Temps (No Heatsink) 66–67°C 56–57°C 47–49°C
Rear I/O Temp 55–57°C 48–50°C 44–46°C
Power Usage (Idle/Load) 19W / 30W 19–21W / 30W 18W / 28W
Noise Level (Max) ~39–40dB Same Slightly lower
Thermal Pad/Metal Contact None None Yes (Metal Base)

GMKTec G9 Ver.2 NAS Review – Verdict and Conclusion

The GMKTec G9, in its improved form, shows that the brand has listened—albeit cautiously—to thermal concerns raised by users and reviewers of the original model. The changes introduced in this updated version are minimal but measurable: better ventilation on the top panel and side mesh grille allow modest airflow gains, which result in lower surface and SSD temperatures across the board. Yet, GMKTec has stopped short of making any internal or structural upgrades that would more directly resolve thermal issues, such as introducing a metal baseplate, bundling SSD heatsinks, or adjusting the system’s internal fan architecture. All other hardware elements—CPU, memory, SSD configuration, I/O, BIOS, and software readiness—remain identical. As a result, while the device performs better in heat dissipation than before, it does so by a margin that may not justify an upgrade for existing G9 users. First-time buyers, however, may find it to be a safer choice now—particularly when paired with aftermarket heatsinks and used in moderate workloads.

However, the presence of the Xyber Hydra in the same price bracket poses a critical challenge to the G9’s value proposition. Offering the same N150 CPU, more memory, and a far superior thermal design with an integrated metal heat-spreading base, the Hydra addresses nearly every lingering complaint about the G9 without altering the system’s core layout. For prospective buyers deciding between the two, the G9’s only advantages now lie in its wider availability, slightly more recognizable branding, and marginally more mature firmware support. If those factors matter less than thermal reliability, long-term SSD health, and RAM headroom, then the Hydra is the more complete solution. Ultimately, the improved GMKTec G9 is a more stable and better-performing version of its former self, but its restrained upgrades feel like a missed opportunity in a market where near-clones have already moved ahead in meaningful ways.

Where to Buy?
PROs of the GMKTec G9 NAS CONs of the GMKTec G9 NAS
  • Affordable price point for a 4-bay NVMe NAS with dual 2.5GbE (typically under $200).

  • Support for up to 32TB of SSD storage across four M.2 NVMe slots.

  • Low power consumption (19W idle, ~30W under load) suitable for 24/7 operation.

  • Improved passive airflow design compared to the original model (lower overall temps).

  • Dual USB-C power input options for flexible cable management.

  • Silent operation, even during sustained activity (under 40dB).

  • Pre-installed OS (Windows 11 Pro and Ubuntu) allows for flexible initial use.

  • Compact, space-saving enclosure ideal for desktop setups or constrained environments.

  • Cooling Improvements are relatively small and No bundled SSD heatsinks, making thermal throttling likely without aftermarket cooling.

  • Non-upgradable 12GB LPDDR5 RAM limits scalability for heavier workloads.

  • Plastic chassis and base panel still hinder full thermal dissipation from SSDs.

  • The Introduction of other NAS such as the Beelink ME Mini and Xyber Hydra has provided appealing alternatives to this device right now

 

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

UGREEN US3000 : onduleur compact pour NAS à 99,99 €

Par : Fx
21 août 2025 à 07:00
UGREEN US3000 NAS - UGREEN US3000 : onduleur compact pour NAS à 99,99 €

UGREEN vient d’annoncer la disponibilité de l’US3000, un onduleur (UPS) spécialement conçu pour ses NAS. Derrière ce petit boîtier compact se cache une solution pensée pour protéger vos données en cas de coupure ou de surtension électrique. Mais si l’idée est séduisante, le produit présente aussi quelques limites…

UGREEN US3000 NAS - UGREEN US3000 : onduleur compact pour NAS à 99,99 €

UGREEN pour NAS US3000

Depuis un peu plus d’un an, UGREEN a fait une entrée remarquée sur le marché des NAS. Si le nouvel entrant n’arrive pas encore au niveau d’un Synology ou Qnap, il séduit de plus en plus d’utilisateurs grâce à un rapport qualité/prix agressif et un design travaillé.

Dans cette logique, l’US3000 vient compléter l’écosystème du fabricant avec un accessoire indispensable : l’onduleur. En effet, tout utilisateur de NAS sait combien il est important de protéger ses données des aléas électriques. Ce dernier permet de sécuriser le matériel face aux surtensions, aux micro-coupures ou autres pannes de courant. L’onduleur communique avec le NAS pour transmettre des informations clés (via une prise USB ou à travers le réseau) comme le niveau de batterie ou la durée d’autonomie restante… et l’appareil connecté peut déclencher l’extinction automatique du système pour éviter toute perte de données.

 

 

UGREEN US3000

UGREEN US3000 - UGREEN US3000 : onduleur compact pour NAS à 99,99 €

Mais revenons à notre actualité… L’US3000 surprend d’abord par son format ultra-compact : 12 × 8 × 3 cm pour seulement 439 g. Avec son châssis en aluminium reprenant le design des NAS UGREEN, il s’intègre parfaitement à la gamme.

Conçu pour être inséré entre l’alimentation externe (hors modèles DXP6800 et DXP8800) et le NAS, il n’est toutefois pas compatible avec la plupart des modèles. C’est une première limitation à prendre en compte. Le fabricant a fait le choix de l’USB Type C pour la communication avec le NAS (le câble est fourni).

Sur le plan technique, l’US3000 dispose :

  • Une capacité de batterie de 12 000 mAh ;
  • Une puissance maximale délivrée de 120 W ;
  • Une autonomie annoncée d’environ 10 minutes.

Autrement dit, il est conçu pour protéger un seul appareil à la fois (ici le NAS). L’autonomie est faible, mais suffisante pour permettre au système de se mettre en sécurité et de s’éteindre proprement. Rien n’indique si le boitier émet un son ou autre alerte lorsqu’il entre en fonction.

Prix et disponibilité

L’UGREEN US3000 peut séduire par son format miniature et sa simplicité d’intégration avec les NAS de la marque. Toutefois, son autonomie réduite et son tarif limitent son intérêt face à des solutions plus polyvalentes.

L’US3000 est disponible dès maintenant sur la boutique officielle de la marque au prix de 99,99 €. Un tarif qui peut sembler élevé, puisqu’il existe sur le marché des onduleurs plus complets et moins cher (ou pour quelques euros supplémentaires).

Néanmoins, pour les utilisateurs déjà séduits par l’écosystème UGREEN et à la recherche d’une solution compacte, ce produit reste une option pratique pour sécuriser leurs données.

Pour en savoir plus, rendez-vous sur la page officielle

DS1825+ vs DXP8800 PLUS NAS – Synology or UGREEN for your Data?

Par : Rob Andrews
20 août 2025 à 18:00

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Which Should You Buy?

In 2025, the market for high-capacity 8-bay NAS systems has become more competitive than ever, with traditional leaders like Synology now facing serious contenders from newer brands such as UGREEN. The Synology DS1825+ represents the company’s latest flagship in the Plus series, incorporating a more restrictive hardware ecosystem and a focus on long-term software support, surveillance integration, and backup solutions. In contrast, the UGREEN DXP8800 Plus leans heavily into raw hardware capability and customization, offering an unlocked platform for power users and DIY enthusiasts.

This head-to-head comparison explores both systems in terms of design, internal specifications, external connectivity, operating systems, and service ecosystems. Beyond surface specs, we’ll also assess real-world usability, third-party compatibility, and the broader implications of each system’s approach to expansion and user control. Whether you’re choosing a NAS for Plex, virtual machines, business continuity, or scalable 10GbE storage, this article aims to clarify which of these two NAS units better fits different user scenarios in 2025 and beyond.

Check Amazon for the Synology DS1825+

$1149.99

 

Check AliExpress for the Synology DS1825+

$1149

Check Amazon for the UGREEN DXP8800 Plus

$1349.99

 

Check AliExpress for the UGREEN DXP8800 PLUS 

$1149

Quick Summary of the Synology DS1825+ NAS

Synology DS1825+ NAS Review HERE

The Synology DS1825+ is an 8-bay desktop NAS that marks a significant shift in the company’s approach to hardware and compatibility. Equipped with the AMD Ryzen Embedded V1500B processor—a 4-core, 8-thread chip running at 2.2GHz —this system balances power efficiency with performance across general file operations, virtualization, and media hosting. It includes support for up to 32GB of ECC DDR5 memory (2x SODIMM, arriving with 8GB by default), two M.2 NVMe slots for Synology-only SSD caching, and an onboard 10GbE port alongside three USB 3.2 Gen 1 ports. However, Synology’s controversial locked ecosystem continues here, restricting users to only Synology-branded drives for full support and access to storage pools, along with limited use of the NVMe bays strictly for cache, not storage.

While its internal hardware is more capable than previous Plus series models, the DS1825+ removes several features seen in past units. By default, it arrives with 2x 2.5GbE network ports, with the option to scale upto 10GbE with the use of a 1st party upgrade PCIe card, but at this pricepoint many users wuld expect 10GbE as standard. The shift to DSM 7.2 brings a refined software experience, including native Active Backup for Business, Hyper Backup, Surveillance Station, and full Docker support. However, DSM’s increasing reliance on Synology’s own hardware and subscription services, such as C2 Surveillance Proxy and Synology Drive Server, makes it harder for users to customize or expand without sticking to Synology’s ecosystem. Overall, the DS1825+ is best suited for users who want an integrated, secure, and reliable NAS experience with minimal manual setup, provided they are comfortable with the tighter hardware constraints.

Quick Summary of the UGREEN DXP8800 PLUS NAS

UGREEN DXP8800 PLUS NAS Review HERE

The UGREEN DXP8800 Plus is an 8-bay NAS solution that positions itself as a powerful, open-platform alternative for users seeking greater control over hardware and software customization. At the heart of the system is the 8-core, 16-thread Intel Core i5-1235U processor, paired with 8GB of DDR5 memory (expandable up to 64GB), but lacks support for ECC memory. Unlike its Synology counterpart, the DXP8800 Plus supports a much wider range of third-party hard drives and SSDs, and offers 2x Gen 4×4 M.2 NVMe slots that can be used not only for cache but also for primary or tiered storage, depending on the user’s operating system. This flexibility is backed by a user-serviceable layout and BIOS access, which allows full compatibility with alternative NAS OS options such as TrueNAS SCALE, UnRAID, or OpenMediaVault.

Connectivity is another area where the DXP8800 Plus stands out. It features two native 10GbE (RJ45) ports, two 2.5GbE ports, and dual USB4/Thunderbolt 4 ports, dramatically expanding external storage, docking, and display capabilities. This, combined with onboard HDMI output and front-accessible USB 3.2 ports, makes it far more versatile for media creation, backup workflows, and even lightweight workstation use. However, the DXP8800 Plus does not come with a polished first-party NAS operating system—UGREEN’s UGOS Pro remains in early stages, and lacks many of the mature backup, surveillance, and cloud services found in DSM. As such, the DXP8800 Plus is ideal for tech-savvy users who value open architecture, higher hardware flexibility, and self-managed software ecosystems over out-of-the-box turnkey simplicity.

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Design and Storage

The Synology DS1825+ maintains the familiar chassis style used in the Plus series, combining functionality with conservative aesthetics. It features a full-sized 8-bay front panel with lockable trays, designed for tool-less insertion of 3.5” SATA drives and optional 2.5” adapters. The main body is a mix of steel and plastic, with a focus on rigidity and reduced vibration. The system lacks any onboard display or LCD, offering only basic LED indicators for system status, drive activity, and alerts, which may frustrate users seeking at-a-glance diagnostics. Access to internal components like the DDR5 ECC RAM and dual M.2 NVMe slots requires removing the top cover and internal caddy brackets, which isn’t as straightforward as it could be—especially given that the NVMe slots are only usable for cache and require Synology-branded drives. Thermal management relies on dual 120mm rear-mounted fans, which operate quietly but are non-replaceable without voiding warranty due to the proprietary fan harness. Physically, the NAS is slightly larger than competing 8-bay units and lacks rubberized feet or vibration isolation, which may be relevant for users placing it on shared work surfaces or desks.

The UGREEN DXP8800 Plus delivers a contrasting design focused on space efficiency, cooling, and user-accessibility. The NAS is housed in a durable metal shell with perforated side panels and a high-density internal structure. Despite its smaller footprint, it manages to accommodate eight SATA bays, two 4X4 M.2 NVMe slots, two SODIMM slots, and active cooling—all while remaining user-serviceable with just a standard screwdriver. The hot-swap trays are spring-loaded and support tool-less 3.5” drives or 2.5” drives via included screws. Access to RAM and SSD slots is streamlined through a simple internal partition design that doesn’t require full disassembly, making upgrades significantly faster than on the DS1825+. The rear exhaust fan is larger than expected for a device this compact, and although thermals are generally within acceptable limits, our testing showed that M.2 SSDs running at PCIe Gen 3 speeds did reach over 65°C during sustained I/O, especially when mounted without aftermarket heatsinks. Unlike Synology, UGREEN includes front-mounted USB 3.2 Gen 2 ports (Type-A and Type-C), ideal for creators and users who frequently move large projects or footage onto the system using direct-attached storage.

When it comes to storage flexibility, the differences are stark. Synology’s DS1825+ enforces a strict hardware compatibility policy, where only Synology-certified HDDs (such as the HAT5300) and SSDs (SAT5200 or SNV3410/3510) are officially supported. Drives outside this list may trigger warnings, be ineligible for pools, or lose access to SMART health readings. NVMe drives cannot be used for storage volumes at all and are locked to caching roles only. These restrictions are enforced by DSM 7.2+ and persist even with the system fully updated.

By contrast, the UGREEN DXP8800 Plus places no such limits. Any SATA or NVMe drive can be used, and users can create pools across mixed-capacity and mixed-brand disks, including enterprise-grade drives. Storage volumes can be configured freely in supported OS environments, and the two M.2 slots can act as primary storage, tiered ZFS vdevs, or cache depending on the OS—TrueNAS SCALE, for instance, recognized all M.2 drives and allowed custom pool creation without issue. This makes UGREEN’s system more attractive to users with existing drives or specific ZFS/Btrfs layouts in mind.

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Internal Hardware

he Synology DS1825+ is built around the AMD Ryzen V1500B processor, a 4-core, 8-thread embedded SoC designed specifically for NAS and server workloads. With a fixed base clock of 2.2GHz and no boost functionality, this Zen-based CPU focuses on stability, multi-threaded efficiency, and low power consumption, making it well-suited for consistent background operations like file serving, multi-client backups, and large-scale storage array management. The chip includes AES-NI support for hardware encryption acceleration and offers full compatibility with DSM’s virtualization stack, including Docker and Synology’s Virtual Machine Manager. However, the V1500B lacks an integrated GPU, and the DS1825+ does not support hardware transcoding, making it unsuitable for Plex or media applications that rely on real-time video encoding unless offloaded to cloud services like Synology C2. It’s a reliable and mature processor choice, albeit one that prioritizes stability over flexibility or raw speed.

The DS1825+ ships with 8GB of ECC DDR4 memory (1x SODIMM) installed, with support for up to 32GB across two slots, and ECC is supported on both official and some compatible third-party modules. The internal layout, however, is relatively restrictive. The memory and M.2 slots require tray removal and partial disassembly to access. Synology includes two M.2 NVMe slots that operate at PCIe Gen 3×4, but DSM only allows them to be used for read/write caching and only with Synology SNV3410 or SNV3510 SSDs. These slots are not available for storage pool creation or system boot, regardless of the SSD used. There is no PCIe slot or BIOS access, making this a closed system that enforces Synology’s validation model tightly. While this approach ensures stability, it limits performance tuning and locks users into higher-priced branded components.

The UGREEN DXP8800 Plus uses an Intel Core i5-1235U, a hybrid 10-core (2 performance, 8 efficiency), 12-thread mobile CPU built on the Alder Lake-U architecture. With a boost clock up to 4.4GHz and integrated Intel Xe graphics, it offers both multi-threaded efficiency and hardware video transcoding support via Quick Sync. This is ideal for users running Plex, Jellyfin, or AI-based video analysis locally. The system ships with 8GB of non-ECC DDR4 memory, expandable to 64GB, using standard SODIMM slots. UGREEN’s internal board features 2x M.2 NVMe slots operating at PCIe Gen 4×4 speeds, offering significantly more bandwidth than Synology’s Gen 3 slots. These SSDs can be used for boot, storage pools, or cache, and the system supports a wide range of third-party drives without warnings or restrictions. BIOS access is fully available, allowing installation of operating systems like TrueNAS, UnRAID, or Proxmox. UGREEN’s internal hardware favors openness and customizability, providing users with direct control over performance, expansion, and component choice—at the cost of requiring more technical expertise.

Feature Synology DS1825+ UGREEN DXP8800 Plus
CPU AMD Ryzen V1500B (4C/8T, 2.2GHz) Intel Core i5-1235U (10C/12T, 0.9–4.4GHz)
Architecture Zen (Embedded, 14nm) Alder Lake-U (Hybrid, Intel 7)
Integrated GPU None Intel Xe (Quick Sync support)
Memory 8GB ECC DDR4 (up to 32GB ECC) 8GB DDR4 non-ECC (up to 64GB)
M.2 NVMe Slots 2x PCIe Gen 3×4 (Synology SSDs, cache-only) 2x PCIe Gen 4×4 (Any SSD, storage/cache/boot)
Drive Bays 8x SATA (Synology-only drives recommended) 8x SATA (any brand/size supported)
Expansion Access No PCIe, no GPU, no BIOS access Full BIOS access, OS selectable
Thermal Design 2x 120mm fans, passive CPU cooling 1x rear fan, active CPU cooling
Transcoding Support None (no GPU) Yes (Intel Quick Sync supported)

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Ports and Connections

The Synology DS1825+ delivers a modest and business-focused range of connectivity options, designed primarily for reliability and integration within an IT-managed environment. It includes 2x 2.5GbE RJ-45 LAN ports, offering basic link aggregation or dual-network failover functionality. While this offers faster-than-Gigabit throughput, the lack of 10GbE out of the box may be limiting for users working with large media files or virtualization workloads, particularly in comparison to other 2025 systems.

The system provides 3x USB 3.2 Gen 1 (5Gbps) Type-A ports, all located on the rear, suitable for UPS integration, external storage, or compatible backup devices. In terms of expansion, Synology includes 2x USB Type-C ports, but these are reserved exclusively for connecting official DX525 expansion units. They do not support data transfer, peripherals, or USB-C accessories and serve only as proprietary expansion interfaces. No HDMI, DisplayPort, or audio outputs are included, and there is no SD card reader. This reinforces Synology’s design philosophy: operate headlessly, manage remotely, and keep the system within the bounds of their validated ecosystem.

In contrast, the UGREEN DXP8800 Plus positions itself as a fully-featured, hybrid-use NAS platform with wide-ranging I/O options for prosumers and professionals. It features 2x 10GbE RJ-45 LAN ports—a clear advantage over Synology’s 2.5GbE setup—offering significantly more bandwidth for media editing, VM hosts, or multi-user environments. On the front, UGREEN includes 2x Thunderbolt 4 (40Gbps) ports, which double as high-speed USB-C for peripherals, external drives, or even eGPU enclosures in supported OS setups. The rear provides 2x USB-A ports at 10Gbps, plus 2x USB 2.0 ports, allowing backward-compatible peripheral support. For display, the system includes 1x HDMI port with 8K output support, connected via Intel’s Xe iGPU, as well as a high-speed SD 4.0 card reader—a particularly valuable addition for content creators offloading camera media directly to the NAS. There is also a PCIe x4 slot for optional hardware expansion. This broad I/O layout enables the DXP8800 Plus to function as a headless NAS, a media server, or even a workstation replacement, depending on the OS you choose to run.

The gap in connectivity between these two NAS systems reflects their broader design philosophies. Synology has deliberately kept the DS1825+ minimal, standardized, and tightly integrated with its ecosystem, which enhances long-term support and serviceability but limits flexibility. UGREEN, on the other hand, offers extensive general-purpose ports that cater to a wider range of workflows—especially for users running Windows, Proxmox, TrueNAS, or virtualized environments. Whether it’s direct media ingestion via SD card, high-speed expansion through Thunderbolt, or dual 10GbE networking, the DXP8800 Plus outpaces the DS1825+ in almost every I/O category. However, this flexibility comes with the expectation that the user is comfortable with open-platform system management and a DIY-style deployment model.

Feature Synology DS1825+ UGREEN DXP8800 Plus
LAN Ports 2x 2.5GbE RJ-45 2x 10GbE RJ-45
USB Type-A Ports 3x USB 3.2 Gen 1 (5Gbps, rear) 2x USB-A 10Gbps (rear) + 2x USB 2.0 (rear)
USB Type-C / TB4 Ports 2x USB Type-C (for DX525 expansion only) 2x Thunderbolt 4 (40Gbps, front)
Video Output None 1x HDMI (8K capable)
SD Card Reader None 1x SD 4.0
Audio Out None None
PCIe Expansion Slot 1x PCIe Gen3 x8 (x4 link) 1x PCIe x4
Front USB Access None Yes – 2x Thunderbolt 4 ports
Expansion Interface DX525 via USB-C (proprietary, not general use) Open – Thunderbolt/USB/PCIe/network based
BIOS/UEFI Access No Yes

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Software and Services

The Synology DS1825+ runs on DSM 7.2, Synology’s mature and widely respected NAS operating system. DSM offers a broad ecosystem of native applications and services, including advanced storage management, multi-tiered backup solutions, virtual machine hosting, and comprehensive multimedia support. Key built-in tools such as Synology Drive, Hyper Backup, Active Backup for Business, Surveillance Station, and Synology Photos provide enterprise-grade data handling in a highly polished interface.

DSM also includes Snapshot Replication with Btrfs, granular folder/file-level restore, and Active Directory integration. Importantly, DSM supports features like Windows ACL permissions, Samba v4, WORM file locking, and two-factor authentication by default, with Synology’s C2 platform offering cloud sync, identity management, and secure backup options. However, DSM has increasingly tied deeper functionality (e.g., certain security tools and snapshots) to Synology-branded storage and expansion hardware, with third-party drive warnings now appearing by default.

UGREEN’s DXP8800 Plus runs UGOS Pro, a Linux-based operating system developed in-house. Now one year into active deployment, UGOS Pro has matured substantially with ongoing updates and wider feature support. The interface is clean and web-accessible, and recent updates have added core NAS functions previously missing. As of the latest firmware, Docker, virtual machine creation, and Jellyfin media server are all natively supported via one-click installs.

Importantly, iSCSI support was also added, addressing a key omission for enterprise or VMware users. 2-factor authentication (2FA) is now present, and security protocols include IP/MAC-level blocking, custom firewall rules, and access control policies. While UGREEN still lacks the depth of anti-ransomware protection found in DSM or QNAP’s QuFirewall, the fundamentals have improved dramatically. Local-only AI services for photo indexing and object recognition have also been refined, with user-selectable models running without internet access.

Where DSM excels in deep integration and business-class reliability, UGOS Pro stands out for its openness and responsiveness to user feedback. Users can enable SSH, customize OS-level settings, and even install TrueNAS, UnRAID, or Proxmox without voiding the warranty, as UGREEN has opted for an open-platform approach.

UGOS also supports Windows file services (SMB), NFS, and web-based file managers, though its permissions system and UI are still somewhat basic compared to DSM. Synology’s first-party software tends to offer higher polish, more documentation, and broader cross-platform support, particularly in cloud-integrated services, whereas UGOS is catching up in functional breadth but remains relatively limited in automation and long-term software ecosystem depth.

Both platforms include mobile apps and browser-based remote access, but Synology’s remote access via QuickConnect is significantly more user-friendly and secure out-of-the-box, while UGREEN’s remote services are best replaced or supplemented by Tailscale, Cloudflare Tunnel, or similar tools. Synology’s Surveillance Station also has years of development behind it with support for hundreds of IP cameras, whereas UGREEN does not yet include native surveillance software in UGOS Pro.

For users seeking a media-focused setup, UGOS offers a good local multimedia experience via Jellyfin, while DSM supports Plex and Video Station (with transcoding limitations depending on CPU). Ultimately, Synology’s DSM remains the more robust, enterprise-ready option, while UGOS Pro presents a highly promising and increasingly competitive open alternative that still favors self-managed users.

Feature Synology DS1825+ (DSM 7.2) UGREEN DXP8800 Plus (UGOS Pro)
OS Platform DSM 7.2 (Linux-based, proprietary) UGOS Pro (Linux-based, open platform)
Virtual Machines Supported (Virtual Machine Manager) Supported (UGREEN VM app)
Docker Support Yes Yes
iSCSI Targets & LUNs Yes Yes (recently added)
Snapshot Replication Yes (Btrfs only) No native snapshot replication tool
Drive Health Monitoring Yes (S.M.A.R.T, IronWolf Health, firmware updates) Basic S.M.A.R.T + early AI features
Cloud Sync Synology C2, Google Drive, Dropbox, OneDrive, S3 WebDAV, Dropbox, OneDrive (limited)
Security Features 2FA, Secure Sign-In, WORM, Snapshot Locking, C2 Backup 2FA, IP/MAC filtering, firewall rules, limited ransomware tools
AI Photo Indexing Yes (Synology Photos, object recognition) Yes (local-only model selection, disable per feature)
Plex Media Server Yes (no hardware transcoding) Not supported natively (use Docker)
Jellyfin Media Server Installable manually or via Docker One-click install supported
Remote Access QuickConnect (Synology ID) UGOS portal + optional third-party tools
App Ecosystem Mature, hundreds of first/third-party apps Growing; core NAS features now stable
Surveillance Surveillance Station (extensive camera support) None natively included

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Verdict and Conclusion

The Synology DS1825+ remains a compelling choice for users prioritizing reliability, software integration, and long-term support. With the proven DSM 7.2 platform, it offers enterprise-grade tools for file management, backup, virtual machines, and surveillance. Features like Snapshot Replication, C2 cloud integration, and Active Backup for Business provide peace of mind for professionals who want a turnkey experience with minimal maintenance. Although hardware specs such as the Ryzen V1500B CPU and dual 2.5GbE ports might seem modest compared to rivals, they are more than adequate for office environments, multi-user file sharing, and even light virtualization. That said, its increasing reliance on Synology-branded drives and accessories, as well as its lack of GPU support and M.2 NVMe flexibility, could be frustrating for DIY enthusiasts or media-focused users.

By contrast, the UGREEN DXP8800 Plus is a hardware-forward NAS that emphasizes performance, bandwidth, and customization. With a 12-core Intel Core i5-1235U CPU, dual 10GbE, PCIe expandability, and full-speed Gen 4 NVMe slots, it is built for workloads that demand raw power—media servers, high-speed backups, AI indexing, and even containerized apps via Docker. UGOS Pro has matured considerably over the last year, with new features like iSCSI, 2FA, VM hosting, and Jellyfin support making it much more viable than at launch. Still, while UGREEN’s open architecture and wider SSD/drive compatibility are a strength, its software ecosystem isn’t yet as refined or battle-tested as Synology’s DSM, especially for more security-sensitive or compliance-bound environments. Surveillance features and enterprise-level monitoring tools are also still missing or immature in comparison.

In short, the Synology DS1825+ is best suited for SMBs, IT administrators, or content creators who want a dependable, low-maintenance NAS with rich native features and strong vendor support, especially where third-party remote access is limited or not desired. On the other hand, the UGREEN DXP8800 Plus is ideal for prosumers, media professionals, and tech-savvy users who want maximum hardware flexibility, faster internal/external transfer speeds, and the freedom to customize their NAS at the OS level, even if that means dealing with a slightly rougher software experience. If ease of use, documentation, and long-term stability are your priorities, the DS1825+ remains a safe bet. But if you’re looking for value in performance per dollar, more openness, and higher bandwidth potential, the DXP8800 Plus offers a lot for the price.

PROS CONS PROS CONS
  • ✅ DSM 7.2 OS offers mature, stable, and feature-rich ecosystem with professional backup, replication, and VM tools.

  • ✅ ECC DDR4 Memory (8GB expandable to 32GB) ensures greater data integrity and system stability.

  • ✅ Broad software support including Surveillance Station, Active Backup, C2 Hybrid Cloud, and Hyper Backup.

  • ✅ PCIe Gen3 slot allows for 10GbE or 25GbE network expansion or M.2 cache via supported adapters.

 

  • ✅ Low noise and power efficiency (~23.8 dB, ~60W during access), making it suitable for office environments.

  • ❌ Limited M.2 NVMe support (Gen3x4, only Synology-branded SSDs officially supported).

  • ❌ No built-in GPU or transcoding support, limiting suitability for Plex or media conversion workflows.

 

  • ❌ Locks users into Synology drives/accessories, reducing flexibility and increasing costs over time.

  • ✅ High-performance Intel Core i5-1235U CPU (12-core, 10-thread) enables heavy multitasking, VMs, and AI workloads.

  • ✅ Dual 10GbE LAN ports allow for ultra-fast network throughput and multi-client simultaneous access.

  • ✅ Two M.2 NVMe Gen4x4 slots support broad range of SSDs for caching or fast storage pools.

  • ✅ 64GB DDR5 upgrade support offers excellent memory headroom for Docker, virtualization, and AI indexing.

 

  • ✅ UGOS Pro now includes Jellyfin, Docker, VMs, iSCSI, and 2FA, closing many early software gaps.

  • ❌ UGOS Pro still lacks polished UI/UX compared to DSM; some features buried or poorly documented.

  • ❌ No official Plex support and limited surveillance tools, weakening multimedia and NVR potential.

 

  • ❌ Brand trust and software maturity still lag behind market leaders like Synology or QNAP.

Check Amazon for the Synology DS1825+

$1149.99

 

Check AliExpress for the Synology DS1825+

$1149

Check Amazon for the UGREEN DXP8800 Plus

$1349.99

 

Check AliExpress for the UGREEN DXP8800 PLUS 

$1149

 

 

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Bons plans Amazon : NAS Ugreen, WD Red, Kindle…

Par : Fx
20 août 2025 à 09:32
promotions - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

Contre toute attente, Amazon propose ce 20 août une série de remises intéressantes sur plusieurs produits high tech. Pourtant, le géant du e-commerce ne met pas particulièrement ces offres en avant, alors qu’elles méritent l’attention. Regardons de plus près quelques-unes de ces promotions…

NAS

DXP2800 2025 - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

Plusieurs NAS Ugreen sont tous en promotion aujourd’hui. On citera en premier le 2 baies DXP2800 est à 314,99€ ce qui est un tarif plutôt attractif. Il s’agit d’un NAS avec 2 emplacements pour les disques durs, un processeur Intel, une mémoire extensible, un port Multi-Gig… La version 4 baies est à 494,99€ (remise de 10%). À noter : les versions Plus ne bénéficient pas de promotion pour le moment.

Disques durs

wd red 4to - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

Le disque dur interne pour NAS WD Red Plus 4To est à 106,99€ (prix conseillé 126,99€). Ce modèle est une véritable référence pour les NAS domestiques et professionnels. Fiable et performant, vous pouvez y aller les yeux fermés.

WD Elements - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

L’ancien mais toujours très performant WD Element 18 To est à 323,99€…. ce qui en fait un excellent rapport qualité-prix (18€/To).

WD My Book 2022 - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

Le disque dur externe WD My Book 24 To est à 489,99€ (ancien prix 537,87€). Lui aussi fait partie des meilleures options du marché dans sa catégorie avec un prix au To de 20,42€.

Objets connectés

kindle colorsoft - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

La nouvelle liseuse couleur Kindle Colorsoft est à 204,99€ (remise de 24%). C’est le premier modèle en couleur et les retours sont plutôt très bons.

fire tv stick 4K - Bons plans Amazon : NAS Ugreen, WD Red, Kindle...

L’excellent lecteur multimédia Fire TV (compatible Dolby Vision/Atmos et HDR10+) est à 39,99€ soit une remise de 43%.

Test NAS ASUSTOR Lockerstor 4 Gen3 (AS6804T) : réseau 5 GbE et 10 GbE, USB4, et SSD NVMe

20 août 2025 à 06:00

Test du NAS ASUSTOR Lockerstor 4 Gen3 (AS6804T) : un modèle puissant avec processeur Ryzen, RAM DDR5 ECC, et 4 interfaces réseau, y compris du 10 GbE.

The post Test NAS ASUSTOR Lockerstor 4 Gen3 (AS6804T) : réseau 5 GbE et 10 GbE, USB4, et SSD NVMe first appeared on IT-Connect.

❌
❌