Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

UGREEN NASync vs UniFi UNAS – Which Should You Buy?

Par : Rob Andrews
29 octobre 2025 à 18:00

UGREEN NASync vs UniFi UNAS – Which Should You Buy?

In the evolving landscape of network-attached storage, the arrival of UGREEN and UniFi (Ubiquiti) marks one of the more interesting shifts in consumer and prosumer data management over the last two years. Both brands, previously recognised for their strength in peripheral hardware and networking respectively, officially entered the NAS sector around late 2023 to early 2024, each taking distinct approaches to design, functionality, and ecosystem integration. UGREEN, following a successful crowdfunding launch in early 2024, built its NASync series around desktop and SSD-based solutions for home, creative, and prosumer users seeking all-in-one local storage, virtualization, and multimedia platforms. Its portfolio now includes systems ranging from the ARM-based DXP2800 to the Intel-powered DXP8800 Plus, offering performance tiers from modest home use to compact workstation-class environments.

Meanwhile, UniFi, a brand with a long history in professional networking and surveillance infrastructure, released its UNAS family within the same timeframe, targeting users already invested in its ecosystem of routers, cameras, and switches. The UNAS lineup now spans from the compact UNAS 2 and UNAS 4 desktop units to the rackmount UNAS Pro 4 and Pro 8 systems, with each designed for straightforward deployment and remote integration within the UniFi Network and Protect platforms. Despite arriving from very different sectors, both companies have effectively lowered the cost of entry to reliable NAS storage while redefining how integrated ecosystems can extend storage functionality. This comparison explores their respective design choices, hardware capabilities, software environments, and operational scope to assess which platform is best suited to different user scenarios in 2025 and 2026.

UniFi vs UGREEN NAS – The TL;DR

In comparing the UniFi and UGREEN NAS platforms, it becomes clear that each brand represents a different vision of what modern network storage should be. UniFi’s UNAS series builds on the company’s heritage in networking and surveillance, delivering a range of efficient, ARM-powered NAS systems that integrate tightly within the UniFi ecosystem. Models such as the UNAS 2, UNAS 4, UNAS Pro 4, and UNAS Pro 8 prioritize reliability, centralized management, and long-term stability rather than raw compute power or expandability. Their hardware is deliberately fixed—non-upgradable memory, ARM Cortex-A55 or A57 CPUs, and limited caching support for NVMe drives—but balanced by advanced network connectivity, including dual 10G SFP+ ports, PoE+++ power options, and redundant power supplies. UniFi’s storage OS focuses on core NAS fundamentals: multiple RAID levels, snapshots, encryption, and secure remote access via the UniFi controller. It is intentionally simple, relying on integration with other UniFi products for extended functionality such as surveillance and automation. In contrast, UGREEN’s NASync line follows an open, performance-driven approach designed for flexibility and standalone capability.

Ranging from the DXP2800 with its 8-core ARM processor to the flagship DXP8800 Plus powered by Intel’s i5-1240P, these systems cover every segment from entry-level home use to prosumer and light enterprise workloads. UGREEN’s hardware offers user-upgradable DDR4/DDR5 memory, PCIe expansion, NVMe storage pooling, and multi-gig connectivity, with higher-end models adding dual 10GbE, Thunderbolt 4, and even GPU compatibility. Its UGOS Pro operating system transforms the NAS into a hybrid server capable of running Docker containers, virtual machines, and AI-based indexing, alongside comprehensive backup and synchronization tools across cloud and local environments. While UniFi emphasizes simplicity, low maintenance, and enterprise-grade network reliability, UGREEN delivers a richer feature set and greater hardware freedom at the expense of long-term enterprise validation. In essence, UniFi NAS suits users already invested in UniFi’s ecosystem who value cohesion, predictable performance, and integrated security, whereas UGREEN NAS appeals to those seeking raw performance, versatility, and independent control without ecosystem constraints.

Why Buy UniFi NAS?

Why Buy UGREEN NAS?

Want to support us NASCompares? Use the links/buttons below, and anything you purchase results in a small commission coming to me and Eddie @NASCompares. It really is just the two of us doing everything, and purchasing things via these links will allow you to passively support creators like us (as well as allow us to keep making videos, providing support, running the forum, making tutorials and more) at no extra cost to yourself!
  • Ecosystem Integration: Seamlessly integrates with UniFi Network, Protect, and Access systems, allowing unified management through a single controller interface.

  • Centralized Management: Designed for administrators managing multiple UniFi sites or devices, providing consistent firmware, remote access, and monitoring from one dashboard.

  • Reliable, Efficient Design: ARM-based architecture ensures low power draw, cool operation, and stable long-term performance with minimal maintenance.

  • Enterprise-Grade Networking: Equipped with up to dual 10G SFP+ and 10GBase-T ports, plus USP-RPS redundancy for professional deployments.

  • Proven Security Framework: Benefits from Ubiquiti’s mature network security infrastructure, signed firmware updates, and NDAA-compliant hardware.

  • Superior Hardware Performance: Offers a full range from ARM to Intel Core i5 CPUs, with upgradable RAM, NVMe storage pools, and optional PCIe expansion.

  • Versatile Software (UGOS Pro): Supports Docker, virtual machines, AI photo indexing, and multi-platform backups out of the box.

  • All-in-One Standalone System: Functions independently without relying on an external ecosystem, ideal for users wanting a complete server in one unit.

  • Advanced Connectivity: Includes 2.5 GbE and 10 GbE networking, USB 4/Thunderbolt 4, and support for direct-attached workflows like video editing or large-file transfer.

  • Rapid Development and Updates: Frequent firmware releases continually add new features, broader hardware support, and improved backup and security options.

 

UniFi vs UGREEN NAS – Design, Storage and Range

When comparing UGREEN and UniFi’s NAS portfolios, the first and most visible difference lies in how each brand approaches system design and deployment environment. UGREEN’s NASync series is focused entirely on desktop enclosures, reflecting the brand’s consumer electronics background and intent to cater primarily to home users, prosumers, and creative professionals. Each model, such as the DXP2800, DXP4800 Plus, and DXP8800 Plus, follows a compact, upright chassis layout with attention to quiet cooling and minimal footprint. The aesthetic is consistent across the range—metallic finishes, clear drive bay accessibility, and understated branding—intended to fit easily on a desk or in a studio environment. By contrast, UniFi’s UNAS range adopts both desktop and rackmount designs, depending on model class. The UNAS 2 and UNAS 4 are designed for smaller workspaces and integrate PoE+++ power options to simplify installation, while the UNAS Pro 4 (1U) and UNAS Pro 8 (2U) are full rackmount systems made from SGCC steel, reflecting their professional and data-center-friendly construction standards.

UGREEN’s systems emphasize flexibility and user-level expandability within their desktop footprint. Most models in the NASync line support 2.5-inch or 3.5-inch SATA drives, dual NVMe SSD slots, and optional PCIe or Thunderbolt expansion, allowing them to function as both storage servers and active editing platforms. The DXP480T Plus, for example, is an all-SSD NAS with four M.2 NVMe bays that appeals to users seeking maximum I/O performance for tasks such as 4K video editing or database caching. The DXP8800 Plus, the flagship, extends this design language with eight SATA bays, dual Gen 4 M.2 SSD slots, dual 10 GbE networking, and Thunderbolt 4 connectivity, making it one of the most powerful turnkey NAS options in the consumer space. In comparison, UniFi’s UNAS systems prioritize structural consistency and network integration over expandability. Even though all models provide dual or single NVMe slots, these are limited to caching duties. Drive capacity across the lineup scales more linearly, from two to eight 3.5-inch bays, maintaining a clear size-to-performance progression while focusing on rack density and cooling efficiency.

From a usability perspective, UGREEN’s design philosophy focuses on standalone versatility. Each NASync model is built to function independently as a complete storage and application host, with optional integration through standard network protocols. Physical accessibility is a clear design consideration, with quick-release trays, front USB ports, and in some models, SD card readers for direct media offload. The visual and acoustic design is optimized for open environments, with whisper-quiet fan systems and smart temperature management, making them suitable for use beside workstations or in living spaces. UniFi’s design philosophy, however, centers on infrastructure harmony rather than isolation. The rackmount models are designed to slide directly into existing UniFi network installations, using standard 1U or 2U spacing and consistent power integration with UniFi’s USP-RPS redundant supply network. Even the desktop UNAS 4 maintains visual continuity with UniFi routers and switches, using similar matte finishes, front-facing status LEDs, and clean ventilation lines.

In terms of product range, UGREEN currently offers at least seven NASync models, each targeting a specific performance segment. These include the DXP2800 (2-bay ARM), DXP4800 (4-bay N100), DXP4800 Plus (4-bay N305), DXP6800 Pro (6-bay N305), DXP480T Plus (SSD-only, N305), DH4300 Plus (4-bay ARM), and DXP8800 Plus (8-bay i5-1240P). Each generation introduces more advanced CPUs, faster interfaces, and expanded media capabilities. UniFi’s current UNAS range, while smaller, has diversified rapidly since its launch. The confirmed models include the UNAS 2, UNAS 4, UNAS Pro 4, UNAS Pro 8, and the earlier UNAS Pro 7-Bay, all of which use ARM-based processors and fixed memory configurations. A larger ENAS 16-Bay ZFS system is already in development, targeting enterprise and datacenter deployments in 2026. Compared with UGREEN’s more gradual tiered approach, UniFi’s product scaling is defined by form factor and network bandwidth rather than by CPU class or user workload.

Price segmentation further highlights their opposing strategies. UniFi’s UNAS line is priced aggressively to attract users into its broader ecosystem, starting at $199 for the UNAS 2, rising to $799 for the Pro 8, and including mid-tier models like the UNAS 4 ($379) and Pro 4 ($499). The pricing aligns with UniFi’s established model of offering capable hardware at low margins to encourage ecosystem investment across switches, cameras, and controllers. UGREEN, by contrast, positions its NASync devices as feature-rich all-rounders, with prices reflecting performance class: from $279 for the DXP2800 to around $1,299 for the DXP8800 Plus. The difference in pricing structure is significant but reflects how each company defines value—UniFi through integrated ecosystem scaling, and UGREEN through standalone hardware strength and included functionality.

Brand Model Range Form Factor Drive Bays NVMe Slots Networking Power Design Typical Price Range
UniFi (Ubiquiti) UNAS 2, UNAS 4, UNAS Pro 4, UNAS Pro 8, UNAS Pro 7-Bay Desktop / Rackmount (1U–2U) 2 – 8 × 3.5″/2.5″ 2 × M.2 (cache only) Up to 3 × 10 GbE (SFP+ + RJ45) Internal + RPS / Dual hot-swap PSU $199 – $799
UGREEN NASync DXP2800, DXP4800(+), DXP6800 Pro, DXP480T Plus, DH4300 Plus, DXP8800 Plus Desktop only 2 – 8 × 3.5″/2.5″ + SSD variants 2 × M.2 (cache + storage) 2.5 GbE / 10 GbE / TB4 / USB 4 External or internal PSU

 

UniFi vs UGREEN NAS – Hardware Range

The internal hardware philosophy of UniFi and UGREEN reflects two distinct interpretations of what a modern NAS should prioritize: efficiency and integration versus performance and versatility. UniFi’s UNAS series relies entirely on ARM-based architecture, a deliberate decision aligned with the company’s emphasis on low power consumption, predictable thermal characteristics, and embedded system reliability. Every model in the current UNAS lineup, including the UNAS 2, UNAS 4, UNAS Pro 4, and UNAS Pro 8, is built around a quad-core ARM processor—the A55 at 1.7 GHz for the smaller systems and the A57 at 2.0 GHz for the rackmount models. These CPUs deliver modest compute performance but strong stability and power efficiency, allowing for sustained 24/7 operation without requiring active thermal management beyond standard fan arrays. This design philosophy mirrors UniFi’s broader network device ecosystem, where embedded ARM SoCs dominate routers, gateways, and cameras, ensuring unified firmware management and hardware compatibility across all product categories.

UGREEN’s NASync architecture takes the opposite route, aiming to deliver workstation-grade power in compact form factors. The entry-level DXP2800 features an octa-core ARM CPU, already outpacing UniFi’s top models in raw processing capability, while the remainder of the series transitions to x86 platforms from Intel’s latest low-power and mid-tier lines. The DXP4800 uses Intel’s N100 processor, the DXP4800 Plus and DXP6800 Pro adopt the more capable N305 with improved iGPU performance, and the flagship DXP8800 Plus integrates the 12th Gen Intel Core i5-1240P, offering hybrid performance and support for hardware transcoding, virtualization, and PCIe Gen 4 NVMe. This variation in processor choice underlines UGREEN’s strategy of providing scalable compute resources for different workloads, from basic backup operations to multi-user virtualization and AI-assisted indexing. Unlike UniFi, UGREEN’s systems can operate as full Linux servers, running multiple containers or virtual machines without external dependencies.

Memory and expansion options further highlight the divergence in hardware scope. UniFi’s systems employ fixed memory configurations—ranging from 4 GB on the UNAS 2 and 4 to 16 GB on the Pro 8—with no user-accessible upgrade paths. This aligns with their embedded design approach, where firmware optimization and unified memory management are prioritized over modularity. In contrast, UGREEN’s NASync devices all support user-upgradable SO-DIMM DDR4 or DDR5 modules, typically allowing capacities between 8 GB and 64 GB, depending on the model. This flexibility benefits users running memory-intensive services such as Docker containers, Plex transcoding, or AI indexing. Moreover, many of UGREEN’s x86 systems support PCIe expansion cards, offering pathways to add 10 GbE NICs, NVMe storage adapters, or GPU accelerators, while UniFi’s systems are intentionally non-upgradable to maintain uniform hardware control and firmware consistency across the UNAS ecosystem.

Networking and connectivity options serve as another key point of differentiation. UniFi has leaned on its networking pedigree, offering up to three 10 GbE connections (two SFP+ and one RJ45) on the UNAS Pro 8, with lower-tier models still providing 2.5 GbE or Gigabit connectivity. Power integration is also a hallmark of their design. The UNAS 2 and UNAS 4 use PoE+++, allowing single-cable deployment through UniFi switches, while the Pro series employs redundant power via USP-RPS or hot-swappable PSUs, reducing downtime in managed networks. UGREEN, on the other hand, focuses on local performance flexibility, providing multi-interface options like 10 GbE, 2.5 GbE, USB 4, and Thunderbolt 4, depending on model class. This allows their systems to double as direct-attached storage (DAS) for editors or content creators, particularly when used via Thunderbolt, an option not present in any UniFi NAS. Power designs in UGREEN systems are conventional but efficient, ranging from compact external adapters on smaller models to integrated supplies on higher-end devices.

The overall hardware comparison reveals two clear user archetypes. UniFi’s hardware suits IT administrators and network professionals seeking dependable, uniform, low-maintenance appliances that integrate natively with UniFi controllers and services. UGREEN’s NASync hardware, meanwhile, targets prosumers, creative professionals, and small business users requiring computational headroom and direct system control. Where UniFi builds closed but predictable infrastructure devices, UGREEN delivers open and adaptable machines capable of serving as both NAS and lightweight servers. The contrast is not one of quality but of philosophy—UniFi favoring consistency and system management efficiency, UGREEN focusing on flexibility and computational breadth.

Brand Model CPU Architecture Memory Upgrade Options Networking Expansion Power Design
UniFi (Ubiquiti) UNAS 2 / UNAS 4 ARM Cortex-A55, 1.7 GHz (Quad-Core) 4 GB Non-upgradable 1 × 2.5 GbE, PoE+++ USB-C (5 Gbps) PoE+++ or external PSU
UNAS Pro 4 ARM Cortex-A57, 2.0 GHz (Quad-Core) 8 GB Non-upgradable 2 × 10G SFP+, 1 × 1G RJ45 None Internal PSU + RPS support
UNAS Pro 8 ARM Cortex-A57, 2.0 GHz (Quad-Core) 16 GB Non-upgradable 2 × 10G SFP+, 1 × 10G RJ45 None Dual hot-swap 550 W PSU
UGREEN NASync DXP2800 ARM Octa-Core 8 GB Limited 2.5 GbE USB 3.2 External PSU
DXP4800 / 4800 Plus Intel N100 / N305 8–16 GB (up to 64 GB) Yes 2.5 GbE / 10 GbE PCIe Gen 3 Internal PSU
DXP6800 Pro Intel N305 16 GB (expandable) Yes Dual 10 GbE PCIe Gen 3 Internal PSU
DXP8800 Plus Intel Core i5-1240P 16–64 GB Yes Dual 10 GbE + Thunderbolt 4 PCIe Gen 4 Internal PSU

UniFi vs UGREEN NAS – Software, Services and Apps

The most significant distinction between UGREEN and UniFi’s NAS platforms lies in their software ecosystems and the broader intent behind their development. UniFi’s UNAS software mirrors the brand’s overarching approach to product design: lightweight, efficient, and designed to integrate seamlessly into the UniFi Network and Protect ecosystems. The UNAS interface focuses almost exclusively on storage management and file security. It provides the fundamental NAS feature set, including multiple RAID configurations, volume encryption, snapshot management, and user-based permission control. Files can be accessed through SMB, NFS, with remote management possible via the UniFi portal or mobile app. However, beyond core storage functionality, UniFi’s NAS software remains deliberately minimal. It lacks support for virtual machines, Docker containers, or app installation frameworks, relying instead on integration with other UniFi devices for broader capabilities such as video surveillance, network management, or cloud relay services.

UGREEN’s UGOS Pro platform adopts a far more expansive, multifunctional design. The software is built on a modern Linux kernel and supports both ARM and x86 architectures, allowing for a full-featured environment with native support for containers, virtual machines, and AI-enhanced media indexing. Out of the box, users can deploy Docker, Portainer, Kubernetes-compatible containers, and KVM-based virtual machines, enabling workloads that go far beyond traditional NAS operations. Backup and synchronization options are also more diverse, with support for rsync, S3, WebDAV, iSCSI, OneDrive, Google Drive, Dropbox, and two-way synchronization across multiple NAS units. The interface emphasizes transparency and customization, giving users direct access to system-level configuration that UniFi’s more streamlined interface omits. Features such as storage tiering (using both HDD and NVMe), application sandboxing, and external GPU detection on select models position UGREEN’s UGOS Pro as one of the most open and flexible NAS operating systems currently available outside of enterprise-class environments.

In client and access support, the contrast continues. UniFi’s ecosystem is designed for centralized control and consistent performance across its product range. The UNAS systems can be monitored via the same UniFi Controller interface used for switches, gateways, and access points, creating a single-pane-of-glass environment that appeals to IT administrators managing multiple UniFi sites. Remote access and firmware updates are handled automatically through UniFi Cloud, and security is strengthened by integration with two-factor authentication, device certificates, and network isolation policies inherited from the company’s professional networking hardware. UGREEN, conversely, provides a more conventional NAS interface that supports multiple access clients and cross-platform tools. In addition to browser access and mobile apps for Android and iOS, users can mount shared drives directly within macOS, Windows, and Linux, while also leveraging a dedicated UGREEN Drive application for photo management and AI-based face/object recognition. Where UniFi’s UNAS feels like an extension of a larger network ecosystem, UGREEN’s software operates as a complete standalone server environment.

Security and maintenance are handled very differently between the two brands. UniFi benefits from a mature background in network device hardening, employing signed firmware, rolling updates, and extensive beta testing through its large enterprise user base. Features such as encrypted storage volumes, HTTPS enforcement, and VLAN isolation come preconfigured with minimal user intervention. However, the trade-off for this controlled environment is reduced user autonomy, as firmware customization and software-side experimentation are discouraged. UGREEN, while newer to the enterprise security space, implements encryption standards such as AES-256, offers built-in 2FA, and continues to expand its ransomware prevention and snapshot recovery tools. Updates arrive frequently and often include feature additions alongside security patches, though the brand still lacks a formal bug bounty or transparency reporting system comparable to UniFi’s. Overall, UGREEN’s software offers greater flexibility and control, while UniFi’s remains more mature and hardened within its controlled network framework.

Brand OS Name Core Focus App/Container Support Virtualization Backup & Sync Remote Access Security & Maintenance
UniFi (Ubiquiti) UniFi OS (Storage Module) File storage, snapshots, ecosystem integration No app store or containers None Local, NFS, SMB, UniFi Cloud Via UniFi Network / Protect Encrypted volumes, 2FA, managed firmware updates
UGREEN NASync UGOS Pro Multi-purpose NAS, hybrid storage & compute Docker, Portainer, Linux apps KVM VM support Rsync, S3, WebDAV, iSCSI, cloud sync Browser, mobile app, direct share AES-256 encryption, 2FA, frequent OTA updates

 

UniFi vs UGREEN NAS – Verdict and Conclusion

Both UGREEN and UniFi have entered the NAS sector from distinct starting points and continue to move in different directions, each targeting a particular type of user. UniFi’s UNAS series delivers consistency, predictable performance, and dependable integration with the broader UniFi ecosystem. Its software is stable, lightweight, and well-suited to users who prioritize straightforward storage management, reliable data handling, and unified control across routers, switches, and surveillance systems. While the hardware is limited to fixed ARM configurations and non-expandable memory, it is efficient, quiet, and designed for continuous operation with minimal maintenance. For organizations already invested in UniFi infrastructure, the UNAS systems provide a logical expansion that keeps management centralized and operational risk low. However, their value depends heavily on ecosystem synergy; outside of that environment, the systems remain competent but relatively inflexible standalone NAS options.

UGREEN’s NASync platform, on the other hand, appeals to users seeking broader performance capability and independence. Its x86-based models, upgradable memory, and open software environment allow it to serve as a hybrid between NAS and compact server, capable of running applications, containers, and virtual machines alongside storage tasks. The design language is more suited to individual or small business use than datacenter deployment, but the hardware range—from ARM to Core i5—covers a far wider performance spectrum than UniFi’s. Software maturity continues to evolve quickly, with new features added frequently, and the systems provide extensive compatibility with third-party clients and backup services. The trade-off is that long-term reliability and enterprise-level security validation are still developing.

Ultimately, UniFi NAS suits users who already rely on UniFi’s networking ecosystem and value simplicity, predictability, and centralized management, while UGREEN NAS caters to those prioritizing flexibility, compute power, and open software capability. Both brands have lowered the entry barrier into reliable NAS ownership, but they embody opposing philosophies: UniFi focuses on integration and control, whereas UGREEN emphasizes capability and independence.

Why Buy UniFi NAS?

Why Buy UGREEN NAS?

  • Ecosystem Integration: Seamlessly integrates with UniFi Network, Protect, and Access systems, allowing unified management through a single controller interface.

  • Centralized Management: Designed for administrators managing multiple UniFi sites or devices, providing consistent firmware, remote access, and monitoring from one dashboard.

  • Reliable, Efficient Design: ARM-based architecture ensures low power draw, cool operation, and stable long-term performance with minimal maintenance.

  • Enterprise-Grade Networking: Equipped with up to dual 10G SFP+ and 10GBase-T ports, plus USP-RPS redundancy for professional deployments.

  • Proven Security Framework: Benefits from Ubiquiti’s mature network security infrastructure, signed firmware updates, and NDAA-compliant hardware.

  • Superior Hardware Performance: Offers a full range from ARM to Intel Core i5 CPUs, with upgradable RAM, NVMe storage pools, and optional PCIe expansion.

  • Versatile Software (UGOS Pro): Supports Docker, virtual machines, AI photo indexing, and multi-platform backups out of the box.

  • All-in-One Standalone System: Functions independently without relying on an external ecosystem, ideal for users wanting a complete server in one unit.

  • Advanced Connectivity: Includes 2.5 GbE and 10 GbE networking, USB 4/Thunderbolt 4, and support for direct-attached workflows like video editing or large-file transfer.

  • Rapid Development and Updates: Frequent firmware releases continually add new features, broader hardware support, and improved backup and security options.

Want to support us NASCompares? Use the links/buttons below, and anything you purchase results in a small commission coming to me and Eddie @NASCompares. It really is just the two of us doing everything, and purchasing things via these links will allow you to passively support creators like us (as well as allow us to keep making videos, providing support, running the forum, making tutorials and more) at no extra cost to yourself!

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Beelink Me Mini vs GMKTec G9 vs CWWK P6 NAS Comparison

Par : Rob Andrews
27 octobre 2025 à 18:00

Beelink Me Mini vs GMKTec G9 vs CWWK P6 SSD NAS Showdown

The compact and SSD-focused NAS landscape has grown increasingly competitive, with new models targeting users who require silent operation, efficient performance, and small-scale virtualization or media serving capabilities. Devices like the GMKTec G9, Beelink ME Mini, and CWWK P6 represent a distinct shift from traditional 3.5” HDD-based systems, instead favoring M.2 NVMe SSD storage in compact chassis designs. These systems are marketed toward home users, prosumers, and developers looking for a balance between cost, flexibility, and low-noise operation, often for roles such as Plex servers, UnRAID deployments, or containerized environments.

Each unit in this comparison leverages low-power Intel Twin Lake processors (notably the N150), offers at least dual 2.5GbE connectivity, and supports multiple M.2 drives, but their implementations vary widely in thermal handling, expandability, and internal architecture. As the line between DIY NAS builds and pre-built options continues to blur, the GMKTec G9, Beelink ME Mini, and CWWK P6 provide a snapshot of how different brands interpret the needs of modern users who prioritize energy efficiency, small footprints, and SSD-based storage workflows. This article evaluates these three devices across pricing, storage architecture, design, and real-world usability to provide a clear overview of their relative strengths and compromises.

CWWK P6 SSD NAS Beelink ME Mini SSD NAS – HERE GMKTec G9 SSD NAS

Beelink Me Mini vs GMKTec G9 vs CWWK P6 SSD NAS – Price and Value

The GMKTec G9 enters the market at around $199 for its 12GB RAM base configuration, positioning it as one of the more accessible SSD-based NAS units available. It includes a Windows 11 Pro license and Ubuntu Linux pre-installed, which can be attractive to users interested in general computing as well as NAS tasks. However, these operating systems are not tailored for storage-focused functionality, and the burden falls on the user to install and configure something like TrueNAS or UnRAID for proper NAS use. Additionally, the system uses non-upgradable LPDDR5 memory and features a plastic chassis, suggesting a design focus on affordability over long-term flexibility. While value is present in terms of included software and passive SSD-ready operation, its entry-level design limits appeal to users planning to scale or repurpose the device beyond its initial setup.

The Beelink ME Mini NAS, typically available at $209 on Beelink’s own storefront, offers a slightly higher upfront cost but balances that with integrated features aimed at simplifying deployment. Unlike the GMKTec G9, the ME Mini comes with an internal power supply and Crucial-branded SSDs in pre-built configurations, offering a greater level of assurance for storage reliability and plug-and-play readiness. The system supports Wi-Fi 6, Bluetooth 5.2, and features a silent fan-assisted cooling design that makes it more suitable for living rooms or office environments. Though it also utilizes soldered 12GB LPDDR5 memory, its form factor, passive aesthetics, and better thermals make it more appealing to users who want a quiet and tidy NAS solution that requires minimal tinkering post-installation. When compared to generic prebuilds, the ME Mini offers greater refinement and turnkey usability in exchange for a modest premium.

The CWWK P6 NAS sets itself apart with a lower base price of $195 for the N150 version, but this does not include memory or storage. Instead, the system is designed for users who prefer sourcing their own SO-DIMM DDR5 RAM and M.2 SSDs, potentially reducing costs if spare components are available. Its use of a single SO-DIMM slot enables expansion up to 48GB, which is considerably more than either the GMKTec or Beelink models. However, this flexibility comes at the cost of initial convenience. Users will need to handle their own OS installation, BIOS configuration, and possibly even resolve SATA recognition issues via firmware tweaks. The CWWK P6 also lacks wireless connectivity by default, and its use of a barrel connector rather than USB-C for power delivery may feel dated. Still, for users with a higher comfort level in DIY environments, the P6 offers a customizable platform with greater headroom for VMs, Plex, and containers.

When considering long-term value, each NAS appeals to a different kind of buyer. The GMKTec G9 is best suited for users who want a simple, functional NAS with minimal setup, though they may run into its limits quickly if performance expectations rise. The Beelink ME Mini justifies its price by offering a more thought-out design, silent thermals, and premium SSD options out of the box—better suited to users who want a clean and quiet system that can be set up rapidly. Meanwhile, the CWWK P6 represents a builder’s NAS: inexpensive upfront, highly scalable, and intended for users who value control over convenience. Ultimately, while price differences between these units are small, the total value depends heavily on user intent and whether ease of deployment, expansion, or component choice takes priority.

Beelink Me Mini vs GMKTec G9 vs CWWK P6 SSD NAS – Storage & Memory

All three NAS systems in this comparison rely exclusively on M.2 NVMe SSDs for internal storage, reflecting a growing emphasis on silent, high-speed flash-based configurations in compact enclosures. The GMKTec G9 features four M.2 NVMe slots, each limited to PCIe Gen 3 x2, offering a theoretical maximum of 2GB/s per drive. In contrast, the Beelink ME Mini supports six M.2 NVMe slots, with five operating at PCIe Gen 3 x1 and one—typically reserved for the OS—at Gen 3 x2. The CWWK P6 matches the G9 in having four slots, though each operates at PCIe Gen 3 x1 speeds, reducing peak bandwidth per drive. This difference in PCIe lane allocation directly impacts aggregate read/write performance, especially in RAID configurations or during high-traffic file operations.

The GMKTec G9’s storage slots are laid out beneath a plastic panel with no included heatsinks, a decision that raises concerns about sustained thermal performance. While it technically supports up to 32TB of total storage across its four bays, the lack of passive or active SSD cooling can lead to throttling unless third-party heatsinks are installed. The Beelink ME Mini, in contrast, integrates a large aluminum heatsink with pre-applied thermal pads on all six slots, ensuring consistent heat transfer and reduced risk of SSD overheating. Though five of its six slots are bandwidth-limited to Gen 3 x1, the thermal design makes it better suited for prolonged uptime and high-usage environments. The CWWK P6 also features a metal enclosure that acts as a passive heat sink, but ships with notably thin thermal pads and relies on an optional USB-powered fan for improved airflow.

Memory configuration is another key area of differentiation. The GMKTec G9 and Beelink ME Mini both ship with 12GB of soldered LPDDR5 memory running at 4800MHz. This fixed memory cannot be upgraded, limiting their long-term viability in RAM-intensive use cases such as virtualization or large-scale container deployment. The CWWK P6, by contrast, includes a single SO-DIMM slot that supports up to 32GB of DDR5 4800MHz memory, making it the most flexible of the three for VM hosting, ZFS-based NAS operating systems, or other memory-sensitive applications. The tradeoff is that buyers must provide their own RAM, adding to the setup cost but allowing for performance tuning based on workload.

Boot and operating system storage configurations differ subtly across the three units. The GMKTec G9 includes a 64GB eMMC drive with pre-installed Windows 11 Pro and Ubuntu, though the eMMC capacity is insufficient for most NAS deployments beyond initial setup. The Beelink ME Mini also offers a 64GB eMMC module but encourages users to install the OS on the Gen 3 x2 slot, especially in bundled configurations that include Crucial P3 SSDs. The CWWK P6 does not include any pre-installed OS or eMMC storage but does allow booting from any of its four NVMe slots, giving advanced users greater freedom to optimize OS installation, especially when using UnRAID or TrueNAS SCALE.

Ultimately, the memory and storage architecture of each system reflects different user priorities. The GMKTec G9 aims for simplicity but is hindered by non-upgradable memory and inadequate SSD cooling. The Beelink ME Mini offers better thermal management and storage capacity, albeit with limited PCIe bandwidth on most slots. The CWWK P6 provides the greatest upgrade potential with socketed RAM and M.2 flexibility, but demands user familiarity with thermal solutions, BIOS configuration, and peripheral sourcing.

Feature GMKTec G9 Beelink ME Mini CWWK P6 (N150)
M.2 Slots 4 x NVMe (PCIe Gen 3 x2) 6 x NVMe (1 x Gen 3 x2, 5 x Gen 3 x1) 4 x NVMe (PCIe Gen 3 x1)
Max Storage Capacity Up to 32TB Up to 24TB Up to 32TB
eMMC / OS Drive 64GB eMMC 64GB eMMC None
SSD Cooling No heatsinks, plastic panel Internal heatsink, pre-applied pads Metal body, thin pads, optional fan
RAM Type 12GB LPDDR5 (soldered) 12GB LPDDR5 (soldered) SO-DIMM DDR5 (user-installed)
RAM Expandability Not expandable Not expandable Up to 32GB

Beelink Me Mini vs GMKTec G9 vs CWWK P6 SSD NAS – Power Consumption, Heat and Noise

The physical construction of these three NAS units reflects differing priorities in material choice, ventilation, and power integration. The GMKTec G9 uses a lightweight plastic chassis, which helps reduce cost but limits heat dissipation across its four M.2 SSDs. The unit relies on internal airflow generated by laptop-style fans, but its design lacks direct ventilation over the SSD bays, and the use of a plastic cover above the M.2 slots reduces thermal transfer. In contrast, the Beelink ME Mini is housed in a symmetrical 99mm³ cube with an internal aluminum heatsink and integrated fan. Its minimalist cube layout includes top and bottom ventilation for vertical airflow and maintains a more enclosed, consistent cooling environment that better suits SSD longevity in passive setups.

The CWWK P6 offers the most robust build quality of the three, using a solid aluminum alloy chassis that doubles as a passive heat sink. It includes a base-level fan mounted beneath the CPU and an optional USB-powered fan for SSD cooling. However, the included thermal pads are extremely thin, reducing their effectiveness under prolonged load unless replaced. Despite this, the chassis is designed to tolerate higher ambient temperatures and shows consistent performance in enclosed spaces. One drawback is the lack of airflow across the top panel unless the optional fan is mounted—without it, SSDs tend to accumulate heat more rapidly, especially during concurrent write operations or large file transfers.

Power delivery also differentiates these devices. The GMKTec G9 uses a USB-C power connector with an external 65W power brick, aligning with modern standards and reducing desktop clutter. The Beelink ME Mini further improves on this with a built-in PSU, removing the need for external adapters altogether and simplifying cable management in home setups. The CWWK P6 reverts to a more traditional 12V barrel connector, which, while functional, feels outdated compared to the USB-C or internal PSU solutions. This design choice may require users to carry a dedicated power supply, limiting flexibility in mobile deployments or environments with shared power infrastructure.

In testing, all three systems showed efficient power usage, though their idle and peak wattages differ slightly due to cooling, CPU behavior, and drive count. The GMKTec G9 drew 19–20W at idle and peaked at 28–30W under sustained load. The Beelink ME Mini demonstrated the lowest idle consumption at 6.9W with no drives, increasing to around 30W when fully populated with six SSDs under heavy activity. The CWWK P6 consumed approximately 18W at idle and peaked at 34–35W with three active VMs and four SSDs. These figures indicate that, despite modest differences in architecture, each system remains power-efficient and suitable for 24/7 use, especially in home environments with low thermal tolerance and energy cost sensitivity.

Feature GMKTec G9 Beelink ME Mini CWWK P6 (N150)
Chassis Material Plastic Aluminum with internal heatsink Aluminum alloy (entire chassis)
Cooling Internal fans, no SSD airflow Silent top fan, central heatsink Base fan + optional USB top fan
Power Connector USB-C (external 65W PSU) Integrated PSU (no brick) 12V Barrel connector (60W PSU)
Idle Power Consumption 19–20W 6.9W (no drives), 16.9W (6 SSDs) ~18W (no drives)
Peak Power Consumption 28–30W ~30–31W 34–35W
Idle Noise Level <40 dBA 31–34 dBA 35–36 dBA (with fan)
Load Noise Level ~40 dBA 37–40 dBA 38 dBA (with optional fan)

Beelink Me Mini vs GMKTec G9 vs CWWK P6 SSD NAS – Conclusion and Verdict

When assessed across all key metrics, the GMKTec G9, Beelink ME Mini, and CWWK P6 occupy distinct positions within the low-cost, all-flash NAS landscape, each catering to different user expectations and levels of technical comfort. The GMKTec G9 is the most turnkey in terms of initial usability, with pre-installed Windows and Ubuntu providing a base for users new to NAS setups or simply looking to use the device as a low-power desktop or file server. Its plastic chassis and lack of thermal optimization limit its suitability for intensive tasks, and the fixed 12GB LPDDR5 memory restricts performance scaling for containers or virtualization. That said, the G9 offers predictable behavior and basic capabilities that will satisfy those seeking an easy, entry-level NAS with minimal setup time, especially for local media streaming or light SMB file services. That said, the G9 is getting rather notorious for it’s poor cooling abilities – so much so that the brand has rolled out an improved cooling verion (see images below). There DO help, but the G9 is still the poorest of the three NAS in this comparison in terms of active cooling and long term temps!

The Beelink ME Mini, though only marginally more expensive, adopts a more premium approach to internal design and build quality. The integrated fan and large aluminum heatsink ensure more consistent SSD temperatures under sustained workloads, and the system is noticeably quieter at idle compared to the G9. Its six M.2 NVMe slots provide greater storage density potential, even though five are limited to PCIe Gen 3 x1 speeds. The soldered memory mirrors the G9’s limitations in upgradeability, but its inclusion of Wi-Fi 6, Bluetooth, and an internal PSU adds notable convenience for deployment in mixed-use environments like offices, bedrooms, or AV cabinets. It will appeal to users who value quiet, thermally reliable operation in a system that arrives largely preconfigured and ready for use with minimal additional hardware.

In contrast, the CWWK P6 forgoes polish and plug-and-play readiness in favor of maximum flexibility and user control. It is the only device in this group to feature upgradable RAM, allowing users to install up to 48GB of DDR5 memory, which opens the door to heavier workloads like virtual machines, ZFS-based NAS operating systems, or multiple Docker containers. The lack of included wireless, OS storage, or bundled RAM/SSD keeps the entry cost low but shifts responsibility onto the buyer to source compatible components. This extends to thermal management—while the chassis is solid aluminum, effective SSD cooling often requires replacing the thin stock pads and adding the optional USB-powered fan. These additional steps will deter less technical users but make the P6 a strong contender for builders, hobbyists, or professionals seeking a flexible platform they can adapt over time.

Ultimately, choosing between these three NAS units comes down to balancing ease of setup, long-term scalability, and thermal reliability. The GMKTec G9 suits users who want to get started quickly with a general-purpose device and accept limitations in memory and thermal design. The Beelink ME Mini delivers a more refined package, ideal for those who prioritize noise, storage density, and out-of-box functionality. The CWWK P6, meanwhile, is the most modular and scalable option, but requires technical confidence and additional investment in compatible components. Each has clear strengths and trade-offs, and the best choice depends on whether the user prioritizes convenience, passive reliability, or long-term upgradability in their NAS setup.

Device Pros Cons
GMKTec G9 – Includes Windows 11 Pro and Ubuntu pre-installed – Non-upgradable 12GB LPDDR5 RAM
– USB-C power input with compact external PSU – Plastic chassis with VERY poor SSD thermal management
– Supports 4 x M.2 NVMe (PCIe Gen 3 x2) – No SSD heatsinks or airflow over storage
– Quiet operation under light loads
– Lower entry price with minimal setup required
Beelink ME Mini – Includes 6 x M.2 NVMe slots (1 x Gen 3 x2, 5 x Gen 3 x1) – Soldered 12GB LPDDR5, no memory expansion
– Built-in PSU for cable-free deployment – Most SSD slots limited to PCIe Gen 3 x1
– Silent fan and integrated heatsink for passive SSD cooling – No RAM or storage customization
– Bundled with Crucial SSDs in some configurations
– Wi-Fi 6 and Bluetooth 5.2 included
CWWK P6 (N150) – Upgradable DDR5 RAM (up to 48GB via SO-DIMM) – No bundled RAM or SSD; user must supply all components
– Solid aluminum chassis for passive thermal dissipation – Thermal pads are thin and require replacement for effective SSD cooling
– 4 x M.2 NVMe slots (PCIe Gen 3 x1) with flexible boot drive assignment – Barrel power connector instead of USB-C or internal PSU
– Best suited for VMs, ZFS, and UnRAID with advanced configuration options
– Lowest base cost and broadest expansion potential
CWWK P6 SSD NAS Beelink ME Mini SSD NAS – HERE GMKTec G9 SSD NAS

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Terramaster F4-425 PLUS NAS Review

Par : Rob Andrews
22 octobre 2025 à 18:00

The Terramaster F4-425 PLUS NAS Review – The New $500+ NAS Standard?

The TerraMaster F4-425 Plus represents a significant step forward in the brand’s 4-bay NAS lineup, targeting users who demand capable hardware and broad feature support at a mid-range price point. Retailing at $569.99, or $484.99 during its introductory discount, it is positioned to compete directly with systems like the Synology DS925+ and QNAP TS-464, both of which occupy similar price and hardware tiers. TerraMaster’s intention with this model is to deliver a “jack of all trades” device that suits both home multimedia environments and small business offices. Internally, it uses Intel’s quad-core N150 processor, part of the newer Twin Lake architecture, with a base clock of 1 GHz and a turbo frequency up to 3.6 GHz. This CPU is paired with 16GB of DDR5 memory, offering a notable upgrade in bandwidth and responsiveness compared to previous DDR4-based TerraMaster models.

Complementing that performance core are three PCIe 3.0 x1 M.2 NVMe slots and four SATA drive bays, supporting a combined raw capacity of up to 144TB when fully populated. This configuration allows the device to accommodate both large-scale HDD storage for bulk data and high-speed SSD arrays for caching or dedicated performance pools. Dual 5GbE network ports on the rear enable theoretical aggregate transfer speeds exceeding 1,000 MB/s, aligning with the system’s positioning as a performance-focused yet affordable NAS. TerraMaster’s TOS 6 operating system comes preinstalled, providing modernized storage management, AI-based photo organization, and security tools like HyperLock WORM protection and isolation mode. Altogether, the F4-425 Plus arrives as one of the most fully featured mid-tier NAS options available in 2025, combining strong hardware, software maturity, and quiet, power-efficient design suited to both personal and professional use cases.

The Terramaster F4-425 PLUS NAS Review – Quick Conclusion

The TerraMaster F4-425 Plus delivers one of the most complete mid-tier NAS packages currently available, balancing strong hardware, efficient design, and flexible software at a highly competitive price. Its Intel N150 processor, 16GB of DDR5 memory, and dual 5GbE ports provide ample speed for data-heavy workloads, while three M.2 NVMe slots add rare versatility for caching or SSD-based pools. The all-metal enclosure maintains low temperatures and quiet operation, and the TOS 6 operating system has matured into a capable platform with snapshot protection, Docker, virtualization, and AI photo management. Although it lacks premium details such as drive locks and redundant fans, and the interface remains less refined than Synology DSM or QNAP QTS, the F4-425 Plus stands out as a practical and forward-looking NAS. It bridges affordability and professional capability, making it suitable for home users, content creators, and small offices that need reliable, fast, and adaptable network storage.

SOFTWARE - 7/10
HARDWARE - 9/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 10/10


8.6
PROS
👍🏻• Dual 5GbE network ports with full independent bandwidth for high-speed transfers + lots of USB-to-5GbE $30 upgrades in the market now
👍🏻• Three PCIe 3.0 x1 M.2 NVMe slots supporting cache or storage pool configurations
👍🏻• Intel N150 processor with integrated graphics enabling 4K hardware decoding and AES-NI encryption
👍🏻• 16GB DDR5 memory (expandable to 32GB) offering improved bandwidth and multitasking performance
👍🏻• Full-metal chassis with efficient thermals, low noise levels, and minimal vibration
👍🏻• Comprehensive RAID and storage management through TOS 6 with snapshot and HyperLock-WORM protection
👍🏻• Supports Docker, virtual machines, Plex, Emby, and Jellyfin natively within TOS 6
👍🏻• Competitive pricing with strong value relative to Synology and QNAP alternatives
CONS
👎🏻• Cheaper N150 NAS Systems have arrived earlier in 2025
👎🏻• 5GbE adoption is low, so only larger 10GbE ready groups (via auto-negotiation) will enjoy the benefits of 5GbE
👎🏻• TOS 6 interface and app ecosystem remain less polished than top-tier NAS platforms


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

Terramaster F4-425 PLUS NAS
Amazon in Your Region for the Terramaster F4 SSD NAS @ $569 ($489.99 till 19th Nov) Terramaster F4-425 PLUS – $569 B&H for the Terramaster F4-425 plus NAS @ $569.99

The Terramaster F4-425 PLUS NAS Review – Design & Storage

The exterior design of the TerraMaster F4-425 Plus maintains the brand’s familiar compact metal chassis but introduces small refinements that improve both usability and thermals. Measuring 150 by 181 by 219 millimeters and weighing just under 3 kilograms, it fits comfortably into a home office or studio setup without generating significant heat or noise. The enclosure is almost entirely metal, with a brushed silver finish that enhances rigidity and passive cooling compared with earlier plastic-faced designs. Four individual drive trays occupy the front panel, each featuring a simple click-and-load mechanism for 3.5-inch or 2.5-inch drives. Although there are no locking latches or LCD displays, the trays are tool-free and straightforward to handle. A single 120mm fan at the rear provides adjustable cooling across smart, low, and high-speed profiles, maintaining an operational noise level as low as 20.9 dB(A) when idle with drives installed, according to TerraMaster’s own test figures.

From a structural perspective, the F4-425 Plus has clearly benefited from improved thermal management. The metal shell acts as a heat spreader, with typical external temperatures ranging from 25 to 27°C across the enclosure after extended operation, even under multi-day workload testing. Internal drive bays were observed to maintain around 27 to 29°C, while the rear ports and fan area registered between 36 and 38°C during prolonged use. These figures indicate an efficient heat dissipation design, aided by the more conductive chassis material and smart fan calibration. For users concerned with energy efficiency, the power draw remains modest thanks to the Intel N150 processor’s low TDP, allowing the system to idle at roughly 13 watts with SSDs installed and scale to around 60 watts under sustained load with four enterprise-class HDDs spinning.

In terms of drive configuration, the NAS supports up to four SATA 6Gb/s drives and three M.2 2280 NVMe SSDs. This combination provides a theoretical maximum raw capacity of 144TB, assuming four 30TB HDDs and three 8TB SSDs. The inclusion of three NVMe slots rather than the more typical one or two is a notable strength. Each operates on a PCIe 3.0 x1 lane, delivering real-world throughput of approximately 800 to 900 MB/s per SSD, suitable for caching or storage pools. This setup makes it possible to allocate two drives for cache acceleration while dedicating the third to an independent SSD-based pool for high-speed operations like video editing or database hosting. Such flexibility is rare at this price point and broadens the system’s appeal to users with both large data sets and high-performance requirements.

Storage management is handled through TOS 6, TerraMaster’s web-based operating system, which supports a wide range of RAID configurations including TRAID, TRAID+, JBOD, and traditional RAID 0, 1, 5, 6, and 10. TOS 6 also enables SSD caching, snapshots, and HyperLock write-once-read-many functionality for data integrity. Users can assign storage pools to specific workloads, such as separating SSD-based scratch space from HDD archival volumes. Combined with the new graphical interface and more detailed health monitoring tools, it provides a much more transparent overview of drive temperatures, utilization, and S.M.A.R.T. status. For additional flexibility, the system supports online RAID migration and expansion, meaning users can start small and scale capacity over time without data loss.

Beyond local storage, the device integrates directly with TerraMaster’s CloudSync service, which connects to providers like Google Drive, OneDrive, Dropbox, and Baidu Cloud. Hybrid storage configurations allow partial replication or tiered backup between the NAS and the cloud, offering an extra level of redundancy for professional workflows. External connectivity through USB 3.2 ports also supports direct backups to DAS enclosures or portable drives. Altogether, the F4-425 Plus’s design emphasizes efficient cooling, solid construction, and versatile storage architecture, making it a flexible foundation for both data-heavy projects and long-term digital archiving.

The Terramaster F4-425 PLUS NAS Review – Internal Hardware

Internally, the TerraMaster F4-425 Plus is structured around Intel’s N150 processor, a 4-core, 4-thread CPU from the Twin Lake generation. Built on a 6W TDP architecture, this chip delivers a significant efficiency advantage over the previous N5095-based systems while offering a higher burst clock of up to 3.6 GHz. The CPU integrates Intel UHD Graphics, allowing 4K hardware decoding for H.264, H.265, VC-1, and MPEG-4, which is particularly beneficial for Plex, Emby, or Jellyfin users who want native transcoding without GPU add-ons.

This combination makes the system viable not only as a file server but also as a local multimedia hub, capable of decoding and streaming 4K video at up to 60 frames per second. Despite being a low-power chip, its instruction set includes AES-NI hardware encryption, ensuring efficient data security without notable throughput loss when encryption is enabled.

The system’s memory architecture uses a single DDR5 SO-DIMM slot, populated with a 16GB non-ECC module by default and expandable up to 32GB. The adoption of DDR5 over DDR4 marks a generational improvement in bandwidth and latency, leading to faster multitasking, smoother virtualization performance, and reduced overhead when handling multiple users or services. The memory module is non-ECC but benefits from on-die error correction at the hardware level, offering stability improvements over standard DDR4 implementations. This approach aligns with the unit’s target demographic of small offices, creators, and advanced home users who want server-grade responsiveness without enterprise complexity.

Storage connectivity within the system is distributed between four SATA III 6Gb/s interfaces managed by an ASMedia controller and three PCIe 3.0 x1 lanes dedicated to M.2 NVMe SSDs. This configuration ensures balanced throughput for simultaneous HDD and SSD activity. Internally, the layout is straightforward, providing easy access to both the memory slot and M.2 bays via the removable top panel. The power supply is a single 90W external brick, keeping internal temperatures lower and simplifying maintenance.

Together, the hardware configuration represents a thoughtful balance between efficiency, expandability, and performance, aimed at users who need consistent data access, multimedia capabilities, and reliable long-term operation without excess noise or heat.

Component Details
Processor Intel N150 Quad-Core (1.0 GHz base, up to 3.6 GHz burst)
Architecture x86 64-bit, Intel Twin Lake
Hardware Encryption AES-NI engine
Hardware Transcoding H.264, H.265, VC-1, MPEG-4 up to 4K 60 FPS
Memory 16 GB DDR5 non-ECC SO-DIMM (1x16GB preinstalled)
Max Memory 32 GB DDR5
Drive Bays 4 x 3.5″/2.5″ SATA 6Gb/s
NVMe Slots 3 x M.2 2280 PCIe 3.0 x1
Max Storage 120 TB (HDDs) + 24 TB (SSDs) = up to 144 TB combined
RAID Options TRAID, TRAID+, Single, JBOD, RAID 0/1/5/6/10
File Systems Btrfs, EXT4 (internal); NTFS, FAT32, HFS+, Btrfs (external)
Power Supply 90W external adapter
Cooling 1 x 120mm smart fan (adjustable)
Noise Level 20.9 dB(A) in idle
Dimensions (H x W x D) 150 x 181 x 219 mm
Weight 2.9 kg (net)
Operating Temperature 0°C to 40°C

The Terramaster F4-425 PLUS NAS Review – Ports and Connections

The TerraMaster F4-425 Plus offers a broad range of connectivity designed to meet both high-speed networking and general expansion needs. On the rear panel, two 5GbE RJ-45 network ports serve as the central performance feature. These are among the first dual 5GbE implementations in a mid-tier NAS, and each port operates through its own dedicated PCIe 3.0 x1 lane, avoiding bandwidth contention. In testing, each port achieved full theoretical throughput, confirming proper lane allocation. Users can enable link aggregation or SMB multichannel for multi-user workloads, although saturating both ports simultaneously requires fast SSD or hybrid storage configurations. These ports support IPv4/IPv6, VLAN tagging, link aggregation, and Wake-on-LAN, making the system suitable for both small office environments and direct workstation connections.

Complementing the network interfaces, the F4-425 Plus includes four USB 3.2 ports: three Type-A and one Type-C, all operating at 10Gbps. These ports can handle external DAS enclosures, UPS devices, or high-capacity backup drives. The inclusion of a front-mounted USB port improves convenience for ad hoc backups or quick file transfers, addressing a long-standing omission in earlier TerraMaster models. Additionally, an HDMI 2.1 output is positioned on the rear, though its practical use remains limited within TOS, which lacks a native display interface. It may, however, prove useful for third-party operating systems such as Unraid or TrueNAS, where direct console access or local media playback is desired.

Overall, the port layout is clean and efficient, optimized for straightforward cable management. The system’s single large fan sits adjacent to the networking array, allowing for effective airflow without excessive cable obstruction. Power is supplied through a standard barrel connector linked to an external 90W adapter, which helps reduce internal heat buildup. Though it lacks built-in 10GbE or PCIe expansion, the dual 5GbE setup provides more than enough bandwidth for its class, especially when paired with NVMe caching. Users can also connect the NAS to TerraMaster’s USB-based DAS units for storage expansion or off-site replication, offering flexibility without compromising portability or noise levels.

Connection Type Quantity / Type Details
Network Ports 2 × 5GbE RJ-45 Independent PCIe 3.0 x1 lanes, Link Aggregation and SMB Multichannel supported
USB Ports 3 × USB 3.2 Type-A, 1 × USB 3.2 Type-C 10Gbps transfer rate, supports external DAS, UPS, and peripheral devices
HDMI Output 1 × HDMI 2.1 Up to 4K 60Hz, limited TOS functionality, usable under third-party OS
Power Input 1 × DC-in (90W adapter) External PSU to minimize chassis heat
Cooling 1 × 120mm Smart Fan Adjustable speed profiles, rear-mounted
Expansion Options USB DAS expansion Supports TerraMaster DAS units for external scaling

The Terramaster F4-425 PLUS NAS Review – Tests, Noise, Heat and Power Consumption

Performance testing on the TerraMaster F4-425 Plus showed that the system comfortably meets its advertised speed class, particularly when networked over a single 5GbE connection. Using four Toshiba MG-series 7200 RPM enterprise hard drives configured in RAID 5, the system achieved full saturation of one 5GbE port during both AJA and ATTO benchmark tests, reaching consistent read and write speeds around 500 to 520 MB/s. When tested with mixed media files totaling 50.5 GB, it completed the transfer in approximately 3 minutes and 45 seconds, equating to an average throughput of about 224 MB/s.

This is a strong result for a mechanical-drive setup, reflecting efficient caching and balanced SATA bandwidth. SMB Multichannel and link aggregation are supported, though the CPU’s available PCIe lanes limit simultaneous dual-port saturation. Even so, the system handles multiple concurrent transfers and backups without a noticeable decline in throughput.

Testing with NVMe SSDs improved overall responsiveness considerably. The three M.2 2280 PCIe 3.0 x1 slots each sustained sequential transfer rates between 800 and 900 MB/s, allowing the NAS to maintain a high level of random IOPS for metadata-heavy workloads. When used as cache devices, these drives accelerated small-file transfers and application access times, especially when paired with the system’s 16GB of DDR5 memory.

TerraMaster’s TOS 6 supports flexible use of these drives, enabling independent storage pools or hybrid cache layers, depending on the task. In sustained transfers over SMB and iSCSI, the system achieved write speeds close to 950 MB/s and reads near 1020 MB/s when using SSD-based arrays, validating the advantage of dual 5GbE interfaces for all-flash or mixed-tier environments.

Power consumption during operation remained modest, aligning with the platform’s efficient design. With no hard drives installed and three SSDs active, idle draw measured around 13.3 watts. Adding four 7200 RPM HDDs increased idle power to 55 watts and full-load consumption to roughly 61–63 watts under concurrent read/write activity. These figures indicate a well-balanced design that prioritizes power efficiency without restricting performance. Fan speed settings affect both thermals and acoustics predictably: in low-speed mode, the NAS operated near 33 dB(A), while mid and high-speed profiles raised that figure to 37 and 39 dB(A) respectively. During heavy disk operations, readings peaked briefly at around 43 dB(A), which is reasonable given the metal chassis and high-RPM drives used in testing.

Thermal results further underscored the system’s stability. Surface readings from the aluminum body remained between 25°C and 27°C on average, while drive bays hovered at 28–30°C after extended workload sessions. The rear fan exhaust area reached approximately 36–38°C under sustained load. The efficient heat dispersion of the chassis prevented thermal throttling during prolonged transfers or virtualization testing, even with all seven storage devices active. This consistent temperature range indicates that TerraMaster’s choice of single-fan cooling and full-metal housing achieves a practical balance between noise, airflow, and longevity.

Test Condition Configuration Observed Results
Network Throughput (HDD RAID 5) 4 × Toshiba MG08 7200RPM HDDs ~500–520 MB/s read/write (single 5GbE port)
File Transfer Test 50.5 GB mixed media 3m 45s total, 224 MB/s average
SSD Performance 3 × NVMe Gen3 x1 800–900 MB/s per slot, ~1020 MB/s combined read
Power Consumption (Idle) 3 × SSD, no HDD 13.3 W
Power Consumption (Active) 4 × HDD, CPU ~80% 61–63 W
Noise Levels Low–High Fan Speeds 33–43 dB(A)
Temperature Range 3-day uptime, mixed load 25°C–38°C overall system temperature

The Terramaster F4-425 PLUS NAS Review – Verdict and Conclusion

The TerraMaster F4-425 Plus demonstrates how far the company’s mid-range NAS lineup has progressed in terms of hardware refinement and real-world usability. By combining Intel’s efficient N150 processor with 16GB of DDR5 memory, dual 5GbE connectivity, and triple M.2 NVMe slots, it provides a specification normally reserved for higher-priced units. The build quality, centered around a full-metal chassis and quiet cooling design, contributes to consistent thermals and low power usage even under multi-day workloads. While the design omits premium touches like drive locks or redundant fans, the emphasis on practicality and efficient cooling makes it a dependable solution for continuous operation. From a user experience perspective, the integration of TOS 6 represents TerraMaster’s most stable and capable operating system to date, offering improved security features, cloud synchronization tools, snapshot management, and flexible storage configurations that appeal to both home and small office users.

From a value standpoint, the F4-425 Plus stands out as one of the most competitively priced NAS units in its category. At $569.99, or $484.99 during the initial discount period, it delivers strong network and storage performance that aligns closely with rivals from Synology and QNAP while retaining open installation flexibility for third-party platforms such as Unraid or TrueNAS. Its combination of high-speed connectivity, compact design, and mature software environment makes it an appealing option for anyone seeking a 4-bay system capable of multitasking across media streaming, data backup, and light virtualization. Although it cannot fully match the polish of Synology DSM or the plugin ecosystem of QNAP QTS, TerraMaster has successfully positioned this device as a bridge between affordability and professional performance, solidifying its place as one of the more balanced NAS releases of 2025.

Terramaster F4-425 PLUS NAS
Amazon in Your Region for the Terramaster F4 SSD NAS @ $569 ($489.99 till 19th Nov) Terramaster F4-425 PLUS – $569 B&H for the Terramaster F4-425 plus NAS @ $569.99
Terramaster F4-425 PLUS NAS PROs Terramaster F4-425 PLUS NAS CONs
• Dual 5GbE network ports with full independent bandwidth for high-speed transfers + lots of USB-to-5GbE $30 upgrades in the market now
• Three PCIe 3.0 x1 M.2 NVMe slots supporting cache or storage pool configurations
• Intel N150 processor with integrated graphics enabling 4K hardware decoding and AES-NI encryption
• 16GB DDR5 memory (expandable to 32GB) offering improved bandwidth and multitasking performance
• Full-metal chassis with efficient thermals, low noise levels, and minimal vibration
• Comprehensive RAID and storage management through TOS 6 with snapshot and HyperLock-WORM protection
• Supports Docker, virtual machines, Plex, Emby, and Jellyfin natively within TOS 6
• Competitive pricing with strong value relative to Synology and QNAP alternatives
• Cheaper N150 NAS Systems have arrived earlier in 2025
• 5GbE adoption is low, so only larger 10GbE ready groups (via auto-negotiation) will enjoy the benefits of 5GbE
• TOS 6 interface and app ecosystem remain less polished than top-tier NAS platforms

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Minisforum MS-01 vs MS-A2 – Which Is Better?

Par : Rob Andrews
1 octobre 2025 à 18:00

Minisforum MS-01 vs MS-A2 – Which Should You Buy?

Minisforum has steadily earned recognition in the compact workstation space, and the MS-01 stands as one of its most prominent entries. Released with a focus on balancing high-performance hardware in a small chassis, the MS-01 quickly found popularity among professionals needing powerful networking and scalable internals without the bulk of a full-sized desktop. It supports CPUs up to the Intel Core i9-13900H, includes dual 10GbE SFP+ ports, and provides expansion via a PCIe 4.0 x16 slot (operating at x8 speed), giving users access to discrete graphics or high-performance cards if needed. With three internal M.2 slots and support for up to 64GB of DDR5 memory, the MS-01 became a go-to mini workstation for users who value connectivity and component flexibility at a relatively modest price point.

In early 2025, Minisforum introduced the MS-A2 — a system clearly designed as a next-generation counterpart to the MS-01, but one that leans into AMD’s latest advancements. Featuring the Ryzen 9 9955HX processor based on the Zen 5 architecture, the MS-A2 offers more cores, more threads, faster base and boost clocks, and higher supported memory capacity, reaching up to 96GB DDR5 at 5600MHz. It also brings upgrades in memory bandwidth, M.2 storage speed (with all three slots supporting PCIe 4.0 x4), and internal thermal design. From a feature standpoint, the MS-A2 is positioned to meet or exceed the MS-01 in most categories — but it does so with a noticeable bump in price. Still, for users prioritizing top-end performance and storage throughput, the MS-A2 might justify the premium. The sections below break down how these systems stack up in real-world terms — not just on paper, but in actual deployment.

Minisforum MS-A2 vs MS-01 – Hardware Specifications Compared

At a glance, both the MS-01 and MS-A2 share a near-identical chassis, measuring 196×189×48mm and following Minisforum’s signature small form factor aesthetic. Internally, however, there are several notable differences that affect both systems’ expandability and long-term utility. Both devices feature three M.2 slots for high-speed NVMe SSDs, but only the MS-A2 supports full PCIe 4.0 x4 lanes on all three slots. By contrast, the MS-01 includes a single PCIe 4.0 x4 slot, one PCIe 3.0 x4 slot, and one limited PCIe 3.0 x2 slot. This directly impacts storage performance, especially for users aiming to run multiple high-throughput drives in parallel. In real terms, the MS-A2 allows up to three SSDs each capable of saturating 7,000MB/s read speeds, whereas the MS-01 will bottleneck in its second and third storage bays.

Specification MS-01 (Intel Core i9-13900H) MS-A2 (AMD Ryzen 9 9955HX)
CPU Intel Core i9-13900H (14C/20T, up to 5.4GHz) AMD Ryzen 9 9955HX (16C/32T, Zen 5, up to 5.4GHz)
GPU Intel Iris Xe (96 EUs @ 1.5GHz) AMD Radeon 610M (2 CUs @ 2.2GHz)
RAM Support DDR5-5200MHz, up to 64GB (2x SO-DIMM) DDR5-5600MHz, up to 96GB (2x SO-DIMM)
M.2 Storage 1x PCIe 4.0 x4 (2280), 1x PCIe 3.0 x4 (22110), 1x PCIe 3.0 x2 1x PCIe 4.0 x4 (U.2/2280), 2x PCIe 4.0 x4 (2280/22110)
Max Storage Capacity Up to 15TB (U.2), 4TB (each 2280/22110 slot) Up to 15TB (U.2), 4TB (each 2280/22110 slot)
PCIe Expansion 1x PCIe 4.0 x16 slot (x8 speed, half-height) 1x PCIe 4.0 x16 slot (x8 speed, split support)
Ethernet Ports 2x 10Gbps SFP+, 2x 2.5GbE RJ45 2x 10Gbps SFP+, 2x 2.5GbE RJ45
Wi-Fi & Bluetooth Wi-Fi 6, Bluetooth 5.2 Wi-Fi 6E, Bluetooth 5.3
Display Output 1x HDMI 2.0, 2x USB4 (Alt DisplayPort 1.4a) 1x HDMI 2.1, 2x USB-C (Alt DisplayPort 2.0, up to 8K@60Hz)
USB Ports (Front) 2x USB 3.2 Gen2 Type-A, 1x USB 3.2 Gen1, 2x USB 2.0 2x USB 3.2 Gen1 Type-A, 1x USB 2.0 Type-A, 1x Audio Jack
USB Ports (Rear) 2x USB4 (40Gbps), 1x USB 3.2 Gen2 Type-A, 1x USB 3.2 Gen1 2x USB 3.2 Gen2 Type-C, 1x USB 3.2 Gen2 Type-A, 1x USB 3.2 Gen1
Audio I/O HDMI audio + 3.5mm combo jack HDMI audio + 3.5mm 4-in-1 combo jack (input/output)
Cooling 1x CPU fan (12V), 1x SSD fans (5V) 1x CPU fan (12V), 1x SSD fans (5V)
Power Supply 19V DC input (external adapter) 19V / 12.63A (external adapter)
OS Support Windows 11 Pro Windows 11 / Linux
Chassis Dimensions 196 × 189 × 48 mm 196 × 189 × 48 mm
Additional Accessories U.2 adapter, SSD heatsink, mounting hardware Not specified

Both systems include a PCIe 4.0 expansion slot, which is a rare and welcome inclusion in mini PCs. On the MS-01, this slot is x16 physically but electrically operates at x8 speed and is suitable for half-height, single-slot PCIe cards. The MS-A2 retains this format but introduces PCIe bifurcation support, enabling more advanced setups with compatible cards — a notable advantage for developers or users building niche use cases like NVMe RAID or multi-GPU compute tasks in an edge environment. Additionally, memory support is slightly more capable on the AMD model, with the MS-A2 supporting up to 96GB of DDR5-5600 via two SO-DIMM slots, compared to the MS-01’s 64GB ceiling at DDR5-5200. This can make a tangible difference in virtualization or memory-intensive creative workflows.

In terms of connectivity, both units are very well equipped: dual 10GbE SFP+ ports, dual 2.5GbE RJ45, HDMI output, USB 3.2 Gen1/Gen2 Type-A ports, and USB4 (or USB-C with DisplayPort alt mode). The MS-A2 takes a slight lead in display output capabilities, supporting HDMI 2.1 and DisplayPort 2.0 over USB-C, compared to HDMI 2.0 and DisplayPort 1.4a on the MS-01. This means the AMD system supports 8K60 and 4K144 video streams natively. Wireless capability is also a step ahead on the MS-A2 with Wi-Fi 6E and Bluetooth 5.3, compared to the MS-01’s Wi-Fi 6 and Bluetooth 5.2. Altogether, while the MS-01 still holds up well a year after release, the MS-A2 offers clearly improved throughput, higher bandwidth components, and better display and wireless standards.

Minisforum MS-01 vs MS-A2 – CPUs Compared

The defining difference between the Minisforum MS-01 and MS-A2 lies in their processor choices: the Intel Core i9-13900H and the AMD Ryzen 9 9955HX, respectively. While both CPUs are built for high-end mobile performance and boast identical peak boost clocks of up to 5.4GHz, the underlying architecture and core configurations are markedly different. The i9-13900H uses a hybrid architecture with 6 performance cores and 8 efficiency cores, totaling 14 cores and 20 threads. In contrast, the Ryzen 9 9955HX employs 16 full-fledged performance cores and 32 threads based on AMD’s latest Zen 5 architecture. For users engaged in parallel processing tasks—such as 3D rendering, large-scale compilation, or virtualization—the extra cores and threads in the AMD chip deliver a tangible performance uplift.

Specification

 

AMD Ryzen 9 9955HX

Intel Core i9-13900H

Better Performer

 

Architecture Zen 5 (TSMC 4nm) Raptor Lake (Intel 7) AMD (newer architecture, denser node)
Cores / Threads 16C / 32T 14C (6P+8E) / 20T AMD (more cores and threads)
Base Clock 2.5 GHz ~3.1 GHz (P-cores, estimated) Intel (higher base for performance cores)
Boost Clock 5.4 GHz 5.4 GHz Tie
L2 Cache 16 MB Part of total cache (not separated) AMD (clearly larger L2 cache)
L3 Cache 64 MB 24 MB AMD (much larger L3 cache)
TDP (Base / Max) 55W / 75W 45W / 115W Depends (Intel boosts higher, AMD more efficient)
Integrated GPU Radeon 610M (2 CUs @ 2.2GHz) Iris Xe (96 EUs @ 1.5GHz) Intel (much better GPU performance)
Memory Support DDR5-5600, up to 96 GB DDR5-5200, LPDDR5x-6400, DDR4/LPDDR4x Intel (more flexible memory support)
PCIe Support PCIe 5.0 (28 lanes) PCIe 5.0 (CPU) + PCIe 3.0 (Chipset) AMD (uniform PCIe 5.0 support)
Overclocking Yes (Unlocked, PBO, Curve Optimizer) No AMD
Memory Overclocking AMD EXPO Intel XMP Tie
Instruction Set x86-64, AVX512, SSE4A 64-bit, AVX2, SSE4.2 AMD (supports AVX512)
Multithreading Yes (SMT) Yes (Hyper-Threading) Tie
AI Acceleration None DL Boost, GNA 3.0 Intel (dedicated AI features)
Virtualization AMD-V VT-x, VT-d, VT-rp Intel (more granular features)
Security Features SHA, AES, SEV TME, Boot Guard, Control-Flow Enforcement Intel (broader security set)
Display Output DP 2.0, HDMI 2.1 DP 1.4a, HDMI 2.1 AMD (newer DisplayPort version)
Graphics API Support DirectX 12, HDMI 2.1, DP 2.0 DirectX 12.1, HDMI 2.1, DP 1.4a Tie
USB Support USB 3.2 Gen 2 (4), USB 2.0 (1) Thunderbolt 4 (USB4), USB 3.2 Intel (Thunderbolt included)
RAID/NVMe Support Boot, RAID0/1/10 Likely supported via chipset AMD (more explicitly documented)
Thermal Headroom (TjMax) 100°C 100°C Tie
Software Ecosystem Windows/Linux, no vPro Windows/Linux, vPro supported Intel (enterprise-ready)
Smart Platform Features SmartShift MAX, SmartAccess Memory Thread Director, Adaptix, Speed Shift Intel (broader platform-wide optimization)
Max Memory Speed (Type) DDR5-5600 LPDDR5x-6400 Intel (higher speed supported)
ECC Support Not specified No Tie (consumer chips)
Max Displays Supported 4 4 Tie
Target Segment Gaming, Content Creation AI Tasks, Office/Enterprise Depends on use case

Zen 5 is a notable advancement over its predecessors, built on TSMC’s 4nm process and optimized for both performance and power efficiency. This gives the Ryzen 9 9955HX a structural advantage in multithreaded scenarios, with improved instruction throughput, cache handling, and memory bandwidth. The Intel Core i9-13900H, based on Raptor Lake and fabricated using Intel’s “7” process (a refinement of their 10nm SuperFin node), holds its own with mature thread management and strong single-thread performance. Its support for Intel’s Thread Director technology ensures efficient scheduling across its mixed-core layout, which can be beneficial in workloads like content creation and lightly-threaded business apps. However, the Ryzen chip’s unified core design tends to yield more predictable and consistent scaling when all threads are pushed simultaneously, reducing thermal spikes and improving overall sustained performance.

Thermal and power characteristics further highlight the gap between the two systems. Intel’s i9-13900H has a base power of 45W but can boost up to 115W under load, while AMD’s Ryzen 9 9955HX has a configurable TDP ranging from 55W to 75W. Although the Intel chip has a higher upper limit, in practice it tends to spike power draw during short workloads and then throttle back. In comparison, the Ryzen CPU maintains a steadier thermal and power profile over longer tasks. This behavior was reflected in sustained tests over one-hour and 24-hour windows under mixed network and compute usage: the MS-A2’s CPU performed more consistently, with lower long-term thermal build-up, aided by its upgraded internal fan design. Combined with support for up to 96GB of DDR5 memory versus 64GB on the MS-01, the MS-A2’s CPU configuration offers better overall headroom for demanding, sustained workstation use.

Minisforum MS-A2 vs MS-01 – Graphics and Processing Power Compared

Although the Minisforum MS-01 and MS-A2 are positioned as compact workstations rather than gaming rigs, integrated graphics performance still plays a role in determining their suitability for visual workloads, media playback, and GPU-accelerated tasks. The MS-01 leverages Intel’s Iris Xe graphics, which includes 96 execution units running at up to 1.5GHz. The MS-A2, on the other hand, features AMD’s Radeon 610M — a lightweight RDNA2-based iGPU with 2 compute units operating at 2.2GHz. While the AMD GPU has a higher clock speed on paper, the significantly larger number of execution units in the Iris Xe gives the Intel system a considerable edge in real-world performance. In benchmarks such as the Steel Nomad Light test, the MS-01 consistently delivered higher frame rates and better render completion times, particularly during prolonged sequences that tax the GPU.

This performance advantage was also evident in media encoding and general GPU-accelerated workloads. Intel’s integrated graphics tend to benefit from better driver maturity, wider codec support (particularly for Quick Sync Video), and improved handling in professional apps with Intel-optimized pipelines. Users working in environments involving light 3D rendering, accelerated video encoding, or virtual display compositing are more likely to see stable and consistent results from the MS-01’s iGPU. However, it’s important to note that neither device is intended to replace a discrete GPU for high-end graphical workflows. Their iGPUs are best suited for media playback, multi-monitor output, light rendering tasks, and as fallback units for headless server use.

That said, the MS-A2 reclaims ground when it comes to video output capabilities. While the MS-01 supports HDMI 2.0 and DisplayPort 1.4a via USB4, the MS-A2 steps forward with HDMI 2.1 and DisplayPort 2.0 over Type-C. This enables support for up to 8K at 60Hz and 4K at 144Hz, offering tangible benefits for users who rely on ultra-high-resolution displays or high refresh rate monitors in productivity setups. Professionals in video editing, CAD work, or photography may find that this broader standard support gives the AMD model a longer shelf life as display technologies advance. In broader processing terms, the MS-A2’s superior CPU — the Ryzen 9 9955HX — delivers more overall compute performance, particularly in multi-threaded applications. But for users with GPU-reliant workloads or who value stability across legacy software environments, the MS-01’s Iris Xe graphics make a compelling case. Ultimately, choosing between the two comes down to workload distribution: CPU-heavy environments favor the MS-A2, while mixed or GPU-skewed tasks lean toward the MS-01.

Minisforum MS-01 vs MS-A2 – Conclusion and Verdict

After evaluating both systems across CPU architecture, internal connectivity, storage bandwidth, and thermal performance, it becomes clear that the Minisforum MS-01 and MS-A2 cater to slightly different segments of the same professional user base. The MS-01, despite being over a year old, still offers a well-balanced configuration with mature Intel performance, reliable thermal behavior, and excellent compatibility with existing Intel-optimized software. Its Intel Core i9-13900H processor delivers solid single-core performance and responsive handling in mixed-load scenarios, particularly when combined with Iris Xe graphics that outperform AMD’s 610M in general GPU-accelerated tasks. When paired with dual 10GbE SFP+ ports, 2.5GbE RJ45, and PCIe expansion, the MS-01 provides considerable functionality in a highly compact chassis — all at a more affordable starting price than its AMD counterpart.

However, the MS-A2’s specification gains are more than just incremental. It introduces a newer CPU platform with significantly higher multi-threaded performance, better storage throughput via triple PCIe 4.0 x4 M.2 slots, and wider memory support scaling up to 96GB at 5600MHz. These improvements position the A2 as a clear upgrade in raw compute potential. Enhanced display output support, including HDMI 2.1 and DP 2.0 over USB-C, adds flexibility for users deploying ultra-high-resolution or high-refresh-rate monitors in content creation, design, or data visualization environments. Furthermore, the updated internal cooling system — subtle in layout but effective in long-term thermal consistency — ensures the AMD-based system maintains sustained performance under extended workloads. While the MS-A2 demands a higher upfront investment, it delivers longer-term value for users running multi-threaded software stacks, high-speed storage arrays, or heavy virtual machine workloads. In essence, the MS-01 is still a dependable and well-priced workstation that meets the needs of a wide user base. But the MS-A2 redefines Minisforum’s performance ceiling with broader bandwidth, more compute power, and enhanced scalability. For users focused on future-proofing, heavier workloads, or maximizing hardware capability within a small form factor, the MS-A2 is the more capable — if more expensive — option. Your choice ultimately comes down to whether cost or capability is the higher priority in your deployment.

Minisforum MS-01 Pros and Cons Minisforum MS-A2 Pros and Cons
  • Lower Price Point
    The MS-01 is considerably more affordable than the MS-A2, making it a better value for users with lighter or mixed workloads.
    The MS-A2 demands a premium due to its higher-end specs, which may not be fully utilized in typical home or office deployments.

  • Superior Integrated Graphics (Intel Iris Xe)
    With 96 execution units, the Iris Xe GPU in the MS-01 outperforms the Radeon 610M in the MS-A2 for media encoding, driver stability, and general GPU-accelerated workloads.
    The MS-A2’s Radeon 610M has only 2 compute units and is weaker in rendering, encoding, and professional visual tasks.

  • Thunderbolt 4 and Mature USB4 Support
    The MS-01 offers USB4 with DisplayPort 1.4a and Thunderbolt compatibility, which ensures greater peripheral compatibility and broader bandwidth for external devices.
    The MS-A2 lacks Thunderbolt and uses USB-C ports with DisplayPort 2.0, which are better for displays but more limited in external expansion options.

  • More Established Intel Software Ecosystem
    Features like Intel vPro, Thread Director, and DL Boost make the MS-01 better suited to enterprise, AI inference, and compatibility with legacy Intel-tuned workloads.
    The MS-A2 is newer but lacks mature support for certain enterprise features like vPro or AI-specific instructions.

  • Limited Storage Bandwidth
    Only one of the three M.2 slots runs at PCIe 4.0 x4; the others run at PCIe 3.0 x4 and x2. This bottlenecks multi-drive setups or RAID configurations.
    The MS-A2 supports PCIe 4.0 x4 on all three M.2 slots, enabling full-speed NVMe performance on every drive.

  • Lower Memory Capacity and Speed
    Supports up to 64GB DDR5 at 5200MHz. This limits RAM-heavy workloads like virtualization or large dataset handling.
    The MS-A2 supports up to 96GB DDR5 at 5600MHz, giving it better headroom for demanding memory scenarios.

  • Solid GPU Performance Stability
    The MS-01 performs better under GPU-accelerated tasks due to more mature graphics drivers and better software integration (Quick Sync, Adobe, etc.).
    MS-A2 may suffer compatibility or driver limitations in older applications or video pipelines.

  • Much Higher CPU Performance
    The Ryzen 9 9955HX delivers 16 cores and 32 threads, far exceeding the MS-01’s i9-13900H with 14 cores (6P+8E) and 20 threads. This gives the MS-A2 a major edge in rendering, VMs, and parallel workloads.
    The MS-01 holds its own in lightly threaded or bursty workloads but falls behind in sustained multi-core tasks.

  • Full-Speed NVMe Across All Storage Bays
    All three M.2 slots run at PCIe 4.0 x4 speeds, which is ideal for users building high-speed RAID arrays or multi-disk configurations.
    The MS-01’s mixed PCIe generation slots limit throughput and performance scaling with multiple drives.

  • Higher RAM Capacity and Bandwidth
    The MS-A2 supports up to 96GB DDR5-5600, making it more suitable for VM clusters, code compilation, or large creative project workflows.
    The MS-01 tops out at 64GB DDR5-5200, which may become a limiting factor in future-proofing.

  • Advanced Display Output Support
    The MS-A2 features HDMI 2.1 and DisplayPort 2.0, allowing up to 8K60 or 4K144Hz. Ideal for users with high-res displays or multi-monitor setups.
    The MS-01 is limited to HDMI 2.0 and DP 1.4a, which caps out at 4K60 in most scenarios.

  • Weaker Integrated GPU (Radeon 610M)
    The 2CU RDNA2 iGPU in the MS-A2 underperforms compared to the Iris Xe in the MS-01 in encoding tasks, graphical acceleration, and some professional media pipelines.
    The MS-01 offers better iGPU performance and is more compatible with widely used software stacks.

  • Higher Price for the Same Chassis
    While offering better specs, the MS-A2 comes at a significantly higher price for a similar form factor and port layout, making it less cost-efficient for users not needing its full capabilities.
    The MS-01 delivers solid value for money and remains a competitive mini workstation despite being a generation older.

  • Improved Thermal Efficiency and Sustained Load Performance
    A redesigned internal cooling layout in the MS-A2 provides better performance consistency under long-term stress compared to the MS-01, which can throttle during extended workloads.
    The MS-01’s cooling is competent but may experience more thermal spikes under 24/7 heavy use.

Check Amazon for the Minisforum MS-A2 ($639-899 ) or MS-01 ($599-879) Below:

Check AliExpress for the Minisforum MS-A2 ($799 ) or MS-01 ($599) Below:

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

UniFi UNAS Pro 8 Review

Par : Rob Andrews
18 septembre 2025 à 16:02

The UniFi UNAS Pro 8 NAS Review – The Difficult 2nd Album…

Note, the UNAS Pro 2 is NOW LIVE on the UniFi Store . The UNAS 4, UNAS Pro 4 and UNAS Pro 8 are now in the site, but are not available till October.

The UniFi UNAS Pro 8 is the latest rackmount NAS in Ubiquiti’s gradually expanding storage lineup and serves as a direct successor to the UNAS Pro released in late 2024. That earlier seven-bay system introduced UniFi’s first attempt at a prosumer-class NAS with 10GbE connectivity and integration into the UniFi ecosystem, but it was limited in scope by its unusual drive count, absence of fan control, and lack of redundant power options. The Pro 8 addresses many of those concerns by standardising the layout to a full eight 3.5-inch bays, adding dedicated M.2 NVMe slots, and adopting a 2U rackmount form factor with hot-swappable dual power supplies. It also includes a set of rails in the box, something not always seen in turnkey solutions of this scale.

From a technical perspective, the UNAS Pro 8 remains anchored to an ARM-based architecture, employing a quad-core Cortex-A57 processor at 1.7 GHz paired with 16 GB of non-upgradeable memory. This positions it differently from x86 alternatives from Synology or QNAP, limiting its scope for high-end virtualisation or transcoding tasks but keeping overall efficiency high. Network expansion is one of its more striking features, with three 10GbE connections — two SFP+ and one copper port — included by default, offering redundancy and multi-channel potential well beyond the capacity of eight SATA drives. Taken together with the dedicated M.2 NVMe caching support and optional redundant PSUs, the Pro 8 represents an incremental but deliberate step forward in UniFi’s second phase of NAS development.

UniFi UNAS Pro 8 Review – Quick Conclusion

The UniFi UNAS Pro 8 is a clear refinement over the first-generation UNAS Pro, standardising the design to eight bays, introducing hot-swappable dual PSU support, and improving cooling and fan control, while also including rack rails for easier deployment. It delivers solid storage functionality with RAID up to level 6, clustered pools, snapshots, encryption, and read/write caching via NVMe modules, though the caching remains limited to automated policies and the required trays are sold separately. Networking is unusually strong for an eight-bay ARM system, with three 10GbE interfaces providing flexibility for aggregation or failover, even if the storage media is unlikely to saturate that bandwidth. Performance testing showed read speeds close to 850 MB/s in RAID 5 with HDDs, with lower write speeds reflecting the ARM Cortex-A57 processor’s constraints, and SSD arrays would likely achieve closer to 10GbE saturation. The operating system has matured but remains more streamlined than established platforms, with no iSCSI, limited protocol support, and basic backup tools, making it more suitable for straightforward file storage than advanced workloads. Ultimately, the Pro 8 fits best for users already invested in UniFi infrastructure or those seeking a rackmount NAS with strong connectivity and efficiency, but it is not yet a direct alternative to feature-rich solutions from long-standing NAS vendors. That said, if you want an incredible value and solid ‘storage-focused’ rackmount NAS solution – this might well be one of the best examples in 2025!

BUILD QUALITY - 9/10
HARDWARE - 8/10
PERFORMANCE - 7/10
PRICE - 9/10
VALUE - 10/10


8.6
PROS
👍🏻Multiple RAID Configurations supported, but also clustered RAID\'s and support of M.2 NVMes for Caching
👍🏻M.2 Injection is unique, well thought out and easy to utilise for caching
👍🏻THREE 10Gb/s PORTS (technically)! Kind of insane actually, for a 8x SATA drive machine
👍🏻Dual PSU and Failover hugely welcome, after it\'s omission on the UNAS Pro 2024
👍🏻16GB RAM out the box is a significant upgrade over the UNAS Pro from 2024
👍🏻Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
👍🏻Rackmount rails are included in the UNAS Pro 8 retail box, and are of a high quality
👍🏻Exceptionally appealing price point
👍🏻Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
👍🏻Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
👍🏻Ditto for the m.2 NVMe support, though you will need to m.2 adapter trays
👍🏻Comprehensive network storage software in UniFi NAS OS and Drive.
👍🏻Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
👍🏻\'Single Pane of Glass\' management and monitoring screen is very well presented!
👍🏻One of the fastest to deploy turnkey NAS solutions I have ever personally used!
CONS
👎🏻Lack of USB connectivity for convenient plug and share storage drives, network upgrades, 3rd party UPS support and more
👎🏻Very modest base hardware, but understandable relative to the price
👎🏻HDD injection is very unique, but prevents hot swapping
👎🏻Still a lack of client applications native to the NAS services for Windows, Mac, Andoid and Linux
👎🏻Shame about the LCD/LCM control panel being absent
👎🏻M.2 NVMes are not usable for storage pools, just read/write caching - which is a shame, given the large network connectivity available here

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

You can buy the UniFi UNAS Pro 8 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

UniFi UNAS Pro 8 Review – Design & Storage

The UNAS Pro 8 adopts a 2U rackmount form factor, measuring 442.4 x 480 x 87.4 mm and weighing 11.5 kg. The enclosure is constructed from SGCC steel, giving it a sturdy industrial build aimed at rack deployments rather than desktop placement. The system ships with rack rails included, which is uncommon among turnkey NAS appliances in this class, reducing the need for additional accessories when integrating it into an existing rack setup. The front panel presents a uniform layout of eight drive bays, standardising the design over the previous model’s unconventional seven-bay configuration and providing a more predictable arrangement for enterprise or prosumer storage planning.

Each of the eight bays supports both 3.5-inch and 2.5-inch HDDs or SSDs, with tool-less trays supplied for ease of installation. Drives slot in securely with a lockable motion, though there is no key-based locking mechanism on the trays themselves, limiting physical access protection. Installation is simple, with trays accommodating both large-capacity HDDs and smaller SSDs through included screws for 2.5-inch drives. While the bays can be partially populated for smaller-scale deployments, the absence of an expansion chassis option means users must fully plan around the eight-bay limit from the outset.

Cooling has been reworked compared with the earlier UNAS Pro. The system now features multiple fans with improved airflow across the drive bays and system board, supplemented by passive ventilation at the front and central areas of the chassis. Fan control has been integrated into the management software, allowing administrators to adjust fan speeds dynamically, a feature missing from the 2024 model. This provides more direct management of system acoustics and thermal balance, which is important given that high-density SATA arrays can run warm under sustained load.

In addition to the primary SATA storage, the rear of the chassis houses two M.2 NVMe slots. These are integrated into removable tray modules with thermal pads and heatsinks designed to dissipate heat from 2280 or 22110 length SSDs. However, the trays are not included by default, requiring a separate purchase if users wish to install their own NVMe drives.

The implementation is mechanically well thought out, but functionally limited: the NVMe drives can currently only be used for read and write caching.

They cannot be assigned to storage pools or volumes, restricting their utility for users seeking to leverage them as a high-speed tier alongside the eight SATA bays.

From a capacity perspective, the eight 3.5-inch bays allow the use of large modern drives, with confirmed compatibility during testing with 30 TB Seagate IronWolf units as well as UniFi-branded re-labelled Western Digital drives. The total maximum capacity therefore depends on the drives chosen, but the system power budget allocates up to 175W for drives, sufficient to support a full complement of high-capacity HDDs.

In practice, UniFi recommends their own labelled drives but does not enforce vendor lock-in, leaving flexibility for users to select from available NAS-grade HDDs and SSDs on the market. This more open stance is in contrast to the drive validation policies adopted by some established NAS vendors, and it provides an important degree of freedom in deployment.

UniFi UNAS Pro 8 Review – Internal Hardware

At the core of the UNAS Pro 8 is an ARM-based processor, specifically a quad-core Cortex-A57 running at 1.7 GHz. This architecture is consistent with UniFi’s approach in the earlier UNAS Pro, prioritising efficiency and lower power draw over raw computational performance. The choice of an ARM SoC means the device is well-suited for file storage, backups, and network-attached services, but it does not provide the same level of support for virtualisation, multimedia transcoding, or container workloads that x86-based systems can deliver. For users considering this system, the hardware direction underlines its positioning as a straightforward storage platform rather than an all-purpose server.

Memory is supplied in the form of 16 GB of LPDDR4, which is soldered to the board and cannot be upgraded. This is a relatively high baseline for an ARM-powered NAS, offering enough headroom for multi-user file access, caching operations, and handling larger RAID arrays without memory saturation. The allocation proved sufficient during array synchronisation tests, though high memory utilisation was observed when building an eight-drive RAID. This suggests the hardware has been provisioned carefully to meet expected workloads, albeit without scope for user expansion if requirements increase later.

The operating system is stored internally on dedicated flash storage, reported within the software as 25.2 GB, likely provisioned as a 32 GB module with some over-provisioning. This design ensures that installed drives remain fully dedicated to storage and that the system can boot independently of the data array. Storage management supports multiple RAID levels up to RAID 6, as well as clustered RAID groupings, providing some flexibility for mixed drive sizes. Combined with hot-swap support and optional failover protection through dual PSUs, the hardware configuration strikes a balance between basic efficiency and the inclusion of some enterprise features.

Component Details
CPU Quad-Core ARM Cortex-A57, 1.7 GHz
Memory 16 GB LPDDR4 (non-upgradeable)
System Storage ~25.2 GB internal flash (likely 32 GB total)
Drive Bays 8 x 2.5″/3.5″ SATA HDD/SSD
NVMe Support 2 x M.2 2280/22110 via rear trays (sold separately)
RAID Support RAID 0, 1, 5, 6, clustered RAID
Hot Swap Supported for HDD/SSD

UniFi UNAS Pro 8 Review – Connectivity & Throughput

The UNAS Pro 8 is equipped with three 10-gigabit network interfaces, consisting of two SFP+ 10G ports and one RJ45 10GbE port with multi-gigabit fallback to 5G, 2.5G, 1G, and 100 MbE. This level of connectivity is notable for a system limited to eight SATA bays, as even high-performance HDDs or SSDs in aggregate are unlikely to saturate more than a single 10GbE link under typical workloads.

While the inclusion of three ports may appear excessive, the arrangement allows for link aggregation, redundancy, and separation of traffic across multiple networks. In practice, this provides administrators flexibility in how the NAS integrates with existing switching hardware, though the real-world performance ceiling remains constrained by the storage media.

Power connectivity is handled through two hot-swappable AC/DC 550W power modules, though only one is included in the base configuration. Installing a second unit enables redundancy, ensuring uninterrupted operation in the event of PSU failure. Testing confirmed seamless failover when one module was removed during sustained read/write operations, with no observable disruption in data availability. However, the absence of USB or UPS integration ports limits external redundancy options, leaving users reliant solely on the dual-PSU configuration for power protection.

In terms of general I/O, the device is closed in design, with no USB ports, HDMI output, or PCIe expansion available. This reflects UniFi’s approach of positioning the system as a dedicated, self-contained appliance managed exclusively via network interfaces and the UniFi OS console. While this reduces versatility for use cases such as direct-attached backups or third-party hardware upgrades, it aligns with the brand’s ecosystem-driven philosophy.

Performance testing with eight 8TB drives in a RAID 5 configuration produced throughput in the region of 800–850 MB/s during sequential read operations. Write speeds were lower, reflecting both the RAID type and the limitations of the ARM Cortex-A57 processor, but still sufficient for multi-user file access and standard NAS workloads. Tests with larger 30TB Seagate IronWolf drives confirmed compatibility, though extended stress testing was not undertaken. With SATA SSDs or a RAID 0 array, the system would likely be capable of saturating a single 10GbE connection, though fully exploiting the three available ports remains unrealistic under the current hardware constraints.

The inclusion of two M.2 NVMe slots, limited to use as read/write cache, provides some performance enhancement. Caching can accelerate frequently accessed data reads or speed up ingest of new data before it is written to the HDD array. However, the caching mechanism is automated, with no user control over cache policies, and the NVMe drives cannot currently be used for storage pools. During operation, thermal imaging recorded SSD module temperatures in excess of 50°C, indicating adequate but stressed cooling under load. This reinforces the importance of active fan management, now included in UniFi’s updated software.

  • Networking: 2 x 10G SFP+, 1 x 10GbE RJ45 (5G/2.5G/1G/100M supported)

  • Power Supply: 2 x 550W hot-swappable AC/DC modules (1 included)

  • Management: Ethernet and Bluetooth 4.1 setup/admin

  • Other I/O: None (no USB, HDMI, or PCIe expansion)

  • Drive Support: 8 x 2.5″/3.5″ SATA HDD/SSD, 2 x M.2 NVMe (cache only)

  • Tested Performance: ~800–850 MB/s sequential reads (RAID 5, HDDs)

  • Write Performance: Lower than reads, limited by ARM CPU overhead

  • Cache Functionality: NVMe SSDs limited to automated read/write caching

UniFi UNAS Pro 8 Review – Software and Services

The UNAS Pro 8 runs on UniFi’s NAS management platform, designed to integrate with the broader UniFi ecosystem while remaining usable as a standalone system. Administration can be carried out through the UniFi OS console in a web browser or via the ui.com cloud portal, with optional remote access that can be enabled or disabled depending on security requirements.

The platform aims to provide a single interface for storage management, user access, and system monitoring. It is less feature-rich than mature alternatives such as Synology DSM or QNAP QTS, but it retains a streamlined design that prioritises ease of setup and centralised administration.

Storage management supports common RAID levels up to RAID 6, with the additional ability to cluster groups of drives into combined pools. Snapshots are available at the folder level, allowing users to roll back to earlier revisions of files. Encryption is supported, requiring a password to mount encrypted volumes after reboot, which ensures data protection in the event of device theft or unauthorised access.

NVMe SSDs can be assigned to caching, though as noted earlier, they cannot be added to storage pools. File access is available through SMB and NFS, but the range of supported protocols is narrower than on established NAS operating systems.

Backup functionality is split into two categories: system configuration backups and file-level backups. System configuration backups can be stored locally or uploaded to a ui.com account, allowing settings and structures to be restored to the same or another UniFi NAS device.

File-level backups extend to cloud services and other NAS units, with support for scheduled routines and basic rules such as overwrite or versioned backups. Cloud integration is functional but limited compared to established platforms, and external synchronisation features such as continuous sync or third-party plug-ins are not yet available.

User management is relatively straightforward, with the option to bind accounts to the wider UniFi ecosystem or create standalone local users. Access can be restricted to LAN-only connections, while two-factor authentication is available through UniFi’s identity and verification tools. At present, some advanced functions common to other platforms, such as iSCSI target creation or scheduled power management, remain absent.

The software continues to evolve, with updates adding features incrementally, but its current focus is on providing reliable core storage, backup, and access management rather than competing directly with the broad feature sets of long-established NAS vendors.

UniFi UNAS Pro 8 Review – Verdict and Conclusion

The UniFi UNAS Pro 8 represents a measured but important step forward compared with the earlier UNAS Pro model released in 2024. By moving to a uniform eight-bay arrangement, it avoids the odd seven-bay design that limited the practicality of the previous system and brings it in line with industry expectations for rackmount storage. The addition of dual hot-swappable power supply modules, though only one is supplied by default, introduces a level of redundancy that was absent in the earlier generation and proved reliable during testing with seamless failover. Improvements to cooling and fan control further distinguish it, with administrators now able to actively manage system noise and temperature rather than relying on fixed presets. UniFi has also bundled rack rails and a robust accessory kit, which simplifies installation and deployment. At the same time, the reliance on an ARM Cortex-A57 processor keeps the platform efficient but restricts its performance ceiling, limiting its suitability for high-throughput tasks such as large-scale virtualisation, multimedia transcoding, or environments where sustained multi-gigabyte per second throughput is essential.

On the software side, UniFi’s NAS operating system has matured since the first-generation release but still prioritises simplicity over feature breadth. The UNAS Pro 8 includes key storage capabilities such as RAID up to level 6, clustered pools, snapshots, encryption, and read/write caching via the rear-mounted NVMe modules. However, those same M.2 slots remain limited to caching only, and the trays required for installation must be purchased separately, which may be seen as an unnecessary barrier. Network protocol support is limited to common services such as SMB and NFS, with no iSCSI implementation, reducing its appeal for professional editing environments or enterprise applications that depend on block-level storage. Cloud and LAN backups are supported with basic scheduling and rules, but the absence of broader synchronisation features or third-party integration keeps it behind more mature platforms. The Pro 8 therefore delivers dependable core NAS functions but does not yet challenge the established ecosystems of Synology or QNAP. For organisations already invested in UniFi’s infrastructure or those requiring a straightforward rackmount storage system with multiple 10GbE connections, it offers a compelling option, but it remains best suited to use cases focused on file storage and backup rather than advanced workloads.

You can buy the UniFi UNAS Pro 8 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

 

PROs of the UniFi UNAS 2 NAS PROs of the UniFi UNAS 2 NAS
  • Multiple RAID Configurations supported, but also clustered RAID’s and support of M.2 NVMes for Caching
  • M.2 Injection is unique, well thought out and easy to utilise for caching
  • THREE 10Gb/s PORTS (technically)! Kind of insane actually, for a 8x SATA drive machine
  • Dual PSU and Failover hugely welcome, after it’s omission on the UNAS Pro 2024
  • 16GB RAM out the box is a significant upgrade over the UNAS Pro from 2024
  • Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
  • Rackmount rails are included in the UNAS Pro 8 retail box, and are of a high quality
  • Exceptionally appealing price point
  • Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
  • Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
  • Ditto for the m.2 NVMe support, though you will need to m.2 adapter trays
  • Comprehensive network storage software in UniFi NAS OS and Drive.
  • Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
  • ‘Single Pane of Glass’ management and monitoring screen is very well presented!
  • One of the fastest to deploy turnkey NAS solutions I have ever personally used!
  • Lack of USB connectivity for convenient plug and share storage drives, network upgrades, 3rd party UPS support and more
  • Very modest base hardware, but understandable relative to the price
  • HDD injection is very unique, but prevents hot swapping
  • Still a lack of client applications native to the NAS services for Windows, Mac, Andoid and Linux
  • Shame about the LCD/LCM control panel being absent
  • M.2 NVMes are not usable for storage pools, just read/write caching – which is a shame, given the large network connectivity available here

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

 

UniFi UNAS 2 Review

Par : Rob Andrews
18 septembre 2025 à 16:01

The UniFi UNAS 2 NAS Review – Value vs Scale

Note, the UNAS Pro 2 is NOW LIVE on the UniFi Store . The UNAS 4, UNAS Pro 4 and UNAS Pro 8 are now in the site, but are not available till October / Q4 2025

The UniFi UNAS 2 is a compact, entry-level two-bay desktop NAS introduced as part of Ubiquiti’s second phase of NAS development, following the debut of the UNAS Pro in 2024. That earlier seven-bay rackmount system was notable for its low $499 price and integrated 10GbE connectivity, but it had an unconventional design, limited fan control, and no support for USB expansion. By contrast, the UNAS 2 shifts away from rackmount hardware and into the desktop market, adopting a much smaller form factor and prioritising simplicity over raw performance. Measuring 13.5 x 12.9 x 22.37 cm and weighing only 1.3 kg, it is one of the smallest systems in the UniFi NAS range and is constructed from polycarbonate rather than steel, reinforcing its role as an affordable, lightweight device.

The hardware is designed primarily for modest storage requirements, supporting two 3.5-inch hard drives with a maximum combined power budget of 52W and an overall consumption ceiling of 60W. The device operates on a single 2.5 GbE RJ45 interface, which also functions as a PoE++ input, removing the need for a conventional power supply unit but requiring either a compatible PoE++ switch or the included 60W injector. This approach marks a clear departure from the UNAS Pro, which included a standard power connector and optional redundancy through additional PSU modules. In practice, the reliance on a single port for both power and data streamlines installation within UniFi networks, but it also introduces a single point of failure and reduces flexibility compared with larger systems.

UniFi UNAS 2 Review – Quick Conclusion

The UniFi UNAS 2 is a compact, entry-level NAS that prioritises simplicity and integration within the UniFi ecosystem over flexibility or raw performance. Its use of PoE++ for both power and connectivity makes installation straightforward in environments with compatible UniFi switches, but it introduces reliance on a single port and limits deployment outside that infrastructure, even with the included injector in the retail kit. The system supports two 3.5-inch drives in a shared non–hot-swappable tray, with RAID 1, or single-disk setups available, but there is no option for expansion or NVMe caching. Hardware consists of a quad-core ARM Cortex-A55 processor with fixed 4 GB of LPDDR4 memory, which is efficient but imposes clear limits on throughput and application scope. Performance testing produced read speeds up to 260 MB/s and writes in the 160–180 MB/s range, sufficient for the 2.5 GbE interface but reflective of the modest hardware and thermal constraints, with CPU temperatures often approaching 80°C under load. Software provides a clean interface with snapshots, RAID tools, backups to other UniFi NAS or cloud services, and user management tied to UniFi identity, but features such as iSCSI, encryption, and granular backup rules are absent. As a result, the UNAS 2 is best suited as a secondary or edge storage device, particularly for UniFi users seeking easy integration, but it lacks the scalability and depth of established NAS platforms needed for primary or enterprise deployments.

BUILD QUALITY - 9/10
HARDWARE - 7/10
PERFORMANCE - 7/10
PRICE - 10/10
VALUE - 9/10


8.4
PROS
👍🏻Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
👍🏻Exceptionally appealing price point
👍🏻Extremely low impact (power use, noise level, physical scale all great)
👍🏻Introduction of USB C 5Gb/s Connectivity is very welcome
👍🏻Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
👍🏻Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
👍🏻Comprehensive network storage software in UniFi NAS OS and Drive.
👍🏻Latest OS updates have included fan control, flexible RAID configurations, encrypted drive creation, customizable snapshots, more backup client choices/targets
👍🏻\'Single Pane of Glass\' management and monitoring screen is very well presented!
👍🏻One of the fastest to deploy turnkey NAS solutions I have ever personally used!
CONS
👎🏻Single network port, though not a dealbreaker (as this is still just 2x SATA throughput), is not great in terms of a network failover or in deployment of SATA SSDs
👎🏻Choice of PoE deployment unusual and limits some deployments
👎🏻USB C connectivity does not support network adapters, NAS expansions or 3rd party UPS devices
👎🏻Very modest base hardware, but understandable relative to the price
👎🏻HDD injection is very unique, but it prevents hot swapping
👎🏻Still a lack of client applications native to the NAS services for Windows, Mac, Android and Linux

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

You can buy the UniFi UNAS 2 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

 

UniFi UNAS 2 Review – Design

The UNAS 2 adopts a small desktop form factor, measuring 135 x 129 x 223.7 mm and weighing 1.3 kg. Its enclosure is constructed from polycarbonate, which makes it lighter and less industrial than the steel-based rackmount models in UniFi’s NAS range. The compact build is suited for environments where space is limited, and it operates within an ambient temperature range of -5 to 40°C and a humidity tolerance of 10–90% non-condensing. With only two drive bays, the UNAS 2 positions itself as an edge device for simple storage and backup, rather than a primary data management system.

Drive installation is handled through a single removable cage that holds both 3.5-inch drives. Each drive clips into place using a shared tray design, with both units inserted in opposite orientations to align with the SATA connectors. While this arrangement is functional, it has some limitations.

There is no support for hot swapping, meaning the system must be powered down before drives can be replaced. Additionally, the shared cage design requires both drives to be handled together, which increases the risk of disturbing a healthy drive when removing or replacing a failed one.

Cooling is managed by a small fan located at the rear, supported by passive ventilation channels at the base of the unit. Air is drawn in from underneath and expelled from the top section, ensuring airflow across the drives and the system board. Thermal tests recorded CPU temperatures in the range of 75–80°C during higher utilisation, with the chassis surface reaching around 39–50°C depending on workload.

The fan is adjustable via UniFi’s management interface, offering a choice between balanced operation and higher cooling at the expense of noise.

Noise levels ranged from 31–32 dBA in idle to 35–38 dBA under load, influenced heavily by the vibration of installed drives.

At the front of the unit, UniFi has integrated a 1.47-inch colour LCM display for system information. This provides basic details such as network status, storage health, and system alerts, but it is not touchscreen and cannot be used for configuration.

The lack of interactive control means that most management tasks still need to be handled through the UniFi OS console. LED indicators are also present for system status, and a physical locking mechanism is built into the drive cage, preventing accidental removal.

From a storage perspective, the UNAS 2 supports a simple RAID configuration for two drives, namely RAID 1, in addition to single-disk setup. Given the limitations of two-bay devices, RAID 1 is the most practical option, prioritising data protection over capacity.

The system officially supports large-capacity HDDs, with tests confirming compatibility up to 30 TB drives. However, there is no expansion capability through additional enclosures, and the single USB-C port on the front is limited to attaching external drives for storage or backups. This means users are confined to the internal two-bay maximum, making long-term planning important for deployment.

UniFi UNAS 2 Review – Internal Hardware

The UNAS 2 is built around a quad-core ARM Cortex-A55 processor clocked at 1.7 GHz. This CPU architecture is designed for efficiency rather than high computational output, which makes it suitable for low-power storage operations, but less capable for advanced workloads such as virtualisation, heavy encryption, or on-the-fly media transcoding.

During testing, CPU temperatures generally remained in the 75–80°C range under sustained use, dropping closer to 50–60°C when idle or under light activity. While these figures fall within operating limits, they reflect the modest cooling design of the enclosure and the limited thermal headroom of the ARM-based hardware.

The device includes 4 GB of LPDDR4 memory, which is soldered to the board and cannot be expanded. This fixed allocation is sufficient for handling RAID 1 synchronisation, snapshots, and standard multi-user file operations, but it sets a ceiling on the system’s multitasking capability.

Unlike larger UniFi NAS models that feature 16 GB of memory, the UNAS 2’s hardware is intended only for light to moderate workloads. Memory use during testing reached high utilisation during RAID synchronisation but did not exceed available capacity, suggesting that UniFi has provisioned enough for the intended use case, while keeping the system constrained to its role as an entry-level solution.

The operating system is stored internally and runs independently of the installed drives, leaving both bays available for data. This separation ensures that the system can still boot even if both drives are removed or replaced. Storage management is limited to the basic RAID levels supported by two-bay systems, and no M.2 NVMe slots are included for caching or tiered storage, a feature reserved for larger UniFi NAS models. As such, the internal hardware of the UNAS 2 reflects its role as a secondary or edge device, designed primarily for straightforward storage and backup within a UniFi-managed network.

Component Details
CPU Quad-Core ARM Cortex-A55, 1.7 GHz
Memory 4 GB LPDDR4 (non-upgradeable)
Drive Bays 2 x 3.5″ SATA HDD
NVMe Support None
RAID Support RAID 1, Single Disk
Hot Swap Not supported
System Storage Internal flash for operating system

UniFi UNAS 2 Review – Connectivity & Performance

The UNAS 2 relies on a single 2.5 GbE RJ45 port for both data and power, with PoE++ providing up to 60W of combined budget. This integration reduces cabling and eliminates the need for an external power brick, but it introduces a single point of failure. That said, the UNAS 2 retail kit DOES include a PoE mains adapter, so ultimately the end user does have the option of deploying in a traditional manner (though power and network connectivity are still funnelled into the same connector).

If the cable or port fails, both power and connectivity are lost. A 60W PoE++ injector is included in the package for users without a compatible PoE++ switch, but this approach remains less flexible than traditional dual-port NAS designs. There is no secondary network interface, Wi-Fi connectivity (rare in a system of this scale, but would allow for failover if it was), support of a USB network adapter or option for link aggregation, which makes the system dependent on one connection for all network and power needs.

In addition to the Ethernet port, the front of the device includes a USB-C interface rated at 5 Gbps. This provides the ability to attach external storage devices, enabling data import, backups, or temporary storage expansion. However, the USB port is limited to storage and does not support network adapters, UPS integration, or official expansion enclosures. While the addition of USB-C addresses one omission from the UNAS Pro, its functionality is constrained and focused solely on external drive access.

Network throughput reflects the limitations of a dual-drive ARM-based NAS. In testing with two 8TB HDDs in RAID 1, sequential read speeds reached around 260 MB/s, while write speeds varied between 160–180 MB/s depending on workload. Benchmarks such as AJA and CrystalDiskMark confirmed this pattern, with read performance consistently higher than write due to the processor’s handling of RAID and data caching. These figures make effective use of the 2.5 GbE interface but leave no capacity to challenge higher multi-gigabit standards.

Power consumption aligns with UniFi’s published specifications, averaging 16–17W in idle, 18–20W during light activity, and 23–24W under heavier use. Peak usage during sustained transfers with RAID synchronisation reached approximately 25W, well below the 60W ceiling. Thermal monitoring showed the CPU rising toward 79–80°C under stress, though the chassis fan helped bring temperatures back into the 50–60°C range once load reduced. These results indicate that while the system operates within its defined limits, sustained workloads push the ARM processor and cooling system close to their maximum operating range.

Noise levels were modest, with idle operation producing around 31–32 dBA and workloads raising this to 35–38 dBA. The shared dual-drive cage design contributed to additional vibration, particularly when placed on a hard surface. Rubberised feet help dampen this effect, but vibration noise was noticeably reduced when the device was placed on softer material such as foam. Overall, while the system remains relatively quiet, its acoustic profile is closely tied to the drives selected and the surface it rests on.

  • Network Interface: 1 x 2.5 GbE RJ45 (PoE++)

  • USB Ports: 1 x USB-C (5 Gbps, storage only)

  • PoE Power Budget: 60W (52W available for drives)

  • Power Supply: 60W PoE++ injector included

  • Max Consumption: 60W (typical 16–25W during use)

  • Tested Performance: ~260 MB/s reads, 160–180 MB/s writes (RAID 1, HDDs)

  • Noise Levels: 31–32 dBA idle, up to 38 dBA under load

  • Temperature Range (Observed): 75–80°C CPU under stress, 50–60°C idle/light use

UniFi UNAS 2 Review – Software and Services

The UNAS 2 runs on UniFi’s NAS management platform, which follows the same single-pane-of-glass interface design seen in the UNAS Pro and UNAS Pro 8. Administration is carried out via a web browser or through a ui.com account, with the option to disable cloud access and operate the system entirely on a local network.

The interface consolidates system status, storage health, user accounts, and backup management into one dashboard. While straightforward to use, it does not provide the same level of customisation or feature depth offered by longer-established NAS operating systems such as Synology DSM or QNAP QTS.

Storage management is limited by the two-bay architecture. Users can create RAID 1 volumes, or operate drives independently. Drive health monitoring, temperature reporting, and snapshot scheduling are all included, allowing basic resilience and file recovery options.

Snapshots can be created and managed at the folder level, with the ability to lock snapshots to prevent deletion. Encryption, however, does not appear to be available on the UNAS 2, in contrast to larger UniFi NAS models where encrypted volumes are supported.

Backup functionality includes both system configuration and file-level options. Configuration backups can be stored locally or uploaded to a ui.com account, allowing the system to be restored quickly if reset or replaced. File-level backups extend to other UniFi NAS systems and selected cloud services, including Google Drive, with scheduling available for automation.

Local LAN backups to other storage devices via SMB are also supported, though filtering and exclusion rules are limited. The system is therefore capable of basic backup routines but lacks the more granular tools available on competing platforms.

User and access management is integrated into the UniFi ecosystem. Administrators can create local accounts or bind accounts to UniFi’s identity services, with two-factor authentication supported via the UniFi Verify app.

Permissions can be set at the folder level, and users can be restricted to LAN-only access if required. Supported protocols include SMB and NFS, but there is no iSCSI target functionality, limiting its application in virtualisation or editing workflows.

The software also includes fan control and system monitoring tools, but resource reporting is basic, with only CPU and memory utilisation graphs available.

Overall, the software reflects UniFi’s effort to balance simplicity with integration, but it remains less comprehensive than that of established NAS vendors.

UniFi UNAS 2 Review – Verdict and Conclusion

The UniFi UNAS 2 is presented as a compact and affordable two-bay NAS designed for straightforward storage and backup tasks, particularly within environments already using UniFi networking hardware. Its PoE++ design is distinctive, allowing both power and connectivity to be delivered over a single cable, simplifying installation where compatible PoE switches are available. This approach aligns with UniFi’s strategy of reducing external hardware requirements, though it also means that a failed port or damaged cable will disable both power and network access simultaneously. For non-UniFi users, the reliance on PoE++ creates an additional barrier, as adoption requires either compatible infrastructure or the included 60W injector. The shared dual-drive tray, lack of hot-swap support, and absence of expansion options further reinforce the system’s role as a fixed-capacity solution, best suited to smaller or secondary deployments. With a maximum drive budget of 52W and overall consumption limited to 60W, the device is power-efficient, but its architecture prioritises simplicity over flexibility.

On the software side, the UNAS 2 provides a user-friendly interface with access to snapshots, RAID configuration, system backups, and integration into the UniFi identity ecosystem. However, the limited hardware constrains the range of features available, and certain tools seen in UniFi’s larger NAS models are absent, such as encrypted volumes or extended network protocol support. Performance testing showed sequential read speeds up to 260 MB/s and write speeds around 160–180 MB/s, which make full use of the 2.5 GbE interface but leave little headroom for more demanding tasks. Thermals during extended use regularly pushed the CPU into the high 70s Celsius, and although fan management can be adjusted, sustained workloads highlight the limits of the system’s cooling design. The software’s omission of iSCSI and advanced backup filters also narrows its role, making it less competitive against established vendors in professional or virtualisation scenarios.

Ultimately, the UNAS 2 is most appropriately positioned as an edge or secondary NAS, providing basic networked storage for existing UniFi users who value plug-and-play deployment and ecosystem consistency, but it is not equipped to serve as a primary system in larger or more demanding environments (VMs, Containers, etc). A great and unique NAS that will nbe at it’s most appealing if you are already invested in the UniFi ecosystem, or have a NAS already that needs a network backup.

You can buy the UniFi UNAS 2 NAS via the link below – doing so will result in a small commission coming to me and Eddie at NASCompares, and allows us to keep doing what we do! 

Here are all the current UniFi NAS Solutions & Prices:
  • UniFi UNAS 2 (2 Bay, $199) – HERE
  • UniFi UNAS 4  (4 Bay + 2x M2, $379) – HERE
  • UniFi UNAS Pro 4 (4 Bay + 2x M.2, $499) – HERE
  • UniFi UNAS Pro (7 Bay, $499) – HERE
  • UniFi UNAS Pro 8 (8-Bay + 2x M.2, $799) HERE

PROs of the UniFi UNAS 2 NAS PROs of the UniFi UNAS 2 NAS
  • Benefits from almost a year of development of the UNAS Pro by UniFi, resulting in a much more complete solution in both hardware and software
  • Exceptionally appealing price point
  • Extremely low impact (power use, noise level, physical scale all great)
  • Introduction of USB C 5Gb/s Connectivity is very welcome
  • Supports complete network/local access if preferred, as well as full remote connectivity with the UI.com account and site manager services
  • Wide Hard Drives and SATA SSD Support (UniFi branded drives and those from 3rd parties such as Seagate Ironwolf, WD Red and Toshiba N300)
  • Comprehensive network storage software in UniFi NAS OS and Drive.
  • Latest OS updates have included fan control, flexible RAID configurations (larger systems), encrypted drive creation, customizable snapshots, more backup client choices/targets
  • ‘Single Pane of Glass’ management and monitoring screen is very well presented!
  • One of the fastest to deploy turnkey NAS solutions I have ever personally used!
  • Single network port, though not a dealbreaker (as this is still just 2x SATA throughput), is not great in terms of a network failover or in deployment of SATA SSDs
  • Choice of PoE deployment unusual and although an adapter for mains power is included, is still not for everyone
  • USB C connectivity does not support network adapters, NAS expansions or 3rd party UPS devices
  • Very modest base hardware, but understandable relative to the price
  • HDD injection is very unique, but it prevents hot swapping
  • Still a lack of client applications native to the NAS services for Windows, Mac, Android and Linux

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

 

Synology DS425+ NAS Review

Par : Rob Andrews
25 août 2025 à 18:00

 Synology DS425+ Review – Should You Buy This NAS?

The Synology DS425+ is a 4-bay NAS system launched in mid-2025 as part of the company’s continued refresh of its Plus Series product line, replacing the DS423+. It is designed to serve home power users, creative professionals, and small business environments that require a balance of reliable storage, streamlined software integration, and modest multimedia capabilities. The unit retains a familiar chassis and architecture, featuring the Intel Celeron J4125 quad-core processor (2.0 GHz base, 2.7 GHz burst) with integrated graphics support, 2GB of soldered DDR4 memory (expandable up to 6GB with an additional 4GB Synology module), and two M.2 NVMe slots intended primarily for SSD caching using Synology-verified drives.

Alongside this hardware, the DS425+ runs DSM 7.2 and includes the full suite of Synology services, such as Active Backup, Surveillance Station, Virtual Machine Manager, Synology Drive, and Hybrid RAID (SHR) support. Network connectivity is handled by a single 2.5GbE and a 1GbE port, while two USB 3.2 Gen 1 ports enable external storage or UPS integration. Despite minimal hardware changes over its predecessor, the DS425+ demonstrates Synology’s continued focus on efficiency, low noise output, and energy-conscious operation—important factors for users planning to run a 24/7 NAS. However, these choices also reflect broader changes in Synology’s platform strategy that may not suit every user, especially those seeking higher flexibility or modern internal specifications.

SOFTWARE - 10/10
HARDWARE - 4/10
PERFORMANCE - 6/10
PRICE - 6/10
VALUE - 7/10


6.6
PROS
👍🏻DSM 7.2 Operating System: Offers a rich suite of first-party apps including Active Backup, Surveillance Station, Synology Drive, and Hyper Backup with strong cross-platform support.
👍🏻Low Noise and Power Consumption: Quiet 92mm fan setup and efficient power usage (~28W under load) make it ideal for 24/7 operation in home or office environments.
👍🏻Integrated Graphics (Intel UHD 600): Supports light Plex or Jellyfin hardware transcoding for 1080p media, a rare inclusion in Synology’s 2025 lineup.
👍🏻Compact and Versatile Design: Small chassis with 4 SATA bays and 2 M.2 NVMe slots for cache acceleration, supporting RAID 5/6 and SHR.
👍🏻Strong Security Posture: Includes 2FA, SSL, VPN tools, and a proactive PSIRT vulnerability disclosure program for ongoing protection.
👍🏻Good Thermal Management: Maintains stable drive and system temperatures (~32–35°C) even under moderate load.
👍🏻Broad Software Ecosystem: Additional apps like Synology Photos, Chat, Office, and Drive make it a multi-functional NAS beyond just storage.
CONS
👎🏻Strict Drive Compatibility: Requires Synology-only HDDs and SSDs for full functionality; third-party drives trigger warnings or are blocked entirely.
👎🏻Outdated CPU Platform: Uses a 2019-era Intel J4125 CPU, now underpowered compared to newer Intel N-series or AMD embedded chips.
👎🏻Memory Upgrade Limitations: Comes with 2GB soldered RAM, upgradeable to only 6GB total, and officially supports Synology-branded memory only.
👎🏻Limited Connectivity and I/O: No PCIe, eSATA, or SD card support; only one 2.5GbE and two 5Gbps USB ports—lagging behind competitors in 2025.


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

Synology DS425+ NAS

Amazon in Your Region for the Synology DS425+ NAS @ $519

B&H for the Synology DS425+ NAS @ $519.99

DSM Software Ecosystem and Integration

One of the most compelling reasons to consider the DS425+ is its support for Synology’s DiskStation Manager (DSM), a mature and highly integrated NAS operating system. DSM 7.2, which comes preinstalled, offers a unified and consistent user experience with a wide range of built-in applications tailored for home users, remote workers, and small office setups. Core tools like Active Backup for Business allow centralized backup of entire operating systems, folders, and virtual machines, making the DS425+ useful as a bare-metal recovery or disaster recovery node. Hyper Backup enables encrypted, versioned backups to local, remote, or cloud destinations, while tools like Snapshot Replication provide rapid rollbacks and protection against ransomware.

Synology also offers sector-specific solutions through packages like Surveillance Station and Virtual Machine Manager, the former allowing support for up to 40 cameras (with up to 800FPS at 1080p H.264), and the latter providing basic VM hosting for Linux and lightweight Windows workloads. These tools are tightly optimized for the hardware, with low overhead and accessible browser-based management. Furthermore, the DS425+ supports Synology Hybrid RAID (SHR), giving users more flexibility when mixing drive capacities and minimizing unused storage space compared to traditional RAID models.

DSM extends beyond simple storage management by including companion apps like Synology Photos, Drive, and Chat, all of which are compatible with Windows, macOS, Android, and iOS. The DS425+ integrates these tools with centralized user management, group permissions, and support for LDAP and Active Directory.

For users who value reliability, Synology’s proactive security strategy—including its public security advisories, pen-testing initiatives, and in-house incident response—adds extra confidence to the long-term stability and safety of the system. In many cases, users report that the simplicity and polish of DSM is what keeps them loyal to the Synology platform, even when hardware specifications appear modest.

Strict Drive Compatibility and Locked Storage Expansion

One of the most significant limitations of the DS425+ is its strict enforcement of Synology-only drive compatibility, particularly for both 3.5″ HDDs and M.2 NVMe SSDs. As of mid-2025, this model only allows full functionality when paired with Synology-branded drives, such as the HAT5300 series for hard disks or SNV3410/3510 for SSDs.

If users attempt to install non-Synology drives—even widely used options like Seagate IronWolf or WD Red—the system will either block the drives entirely or present warnings and restrict key functionality, such as RAID rebuild, hot spare assignment, or expansion. This policy represents a significant departure from Synology’s historically broader compatibility stance and has become a source of ongoing controversy among users and reviewers alike.

From a practical standpoint, this limitation can result in higher upfront costs, reduced flexibility in sourcing drives, and long-term concerns about availability and vendor lock-in. For example, Synology’s high-capacity enterprise HDDs are often difficult to find in retail channels and may be priced at a premium compared to similar offerings from Seagate or Toshiba.

Users migrating from older Synology systems who want to reuse perfectly functional drives may find themselves unable to do so, as the new system won’t allow proper array recovery or expansion unless all drives meet the strict compatibility criteria. While this approach enables Synology to tightly optimize performance and reliability, it effectively turns the DS425+ into a semi-proprietary ecosystem where even core storage components are vendor-restricted.

This is particularly frustrating for experienced NAS users who expect to mix and match drives or who run environments where hardware recycling and drive lifecycle management are critical. The decision also impacts future-proofing: users who want to grow their arrays over time must now ensure drive stock alignment with Synology’s approved list, which may change over time or vary by region. Despite DSM’s strengths, this hard stance on compatibility significantly undermines one of the key selling points of NAS platforms—modularity—and could be a dealbreaker for value-conscious users or those with existing disk investments.

Low Noise and Power Efficiency for 24/7 Use

Another advantage of the DS425+ lies in its energy-efficient and acoustically quiet design, which makes it highly suitable for constant operation in homes, studios, or office environments where noise and heat are critical considerations. Based on extended testing, the system consumes just 28.25W under access load and drops to as low as 6.10W in HDD hibernation, making it one of the more economical NAS units in its class when measured over long-term 24/7 usage.

Even when populated with four 4TB hard drives and placed under sustained load, real-world power draw rarely exceeded 44W during high CPU utilization. This is further aided by the relatively low thermal output, with ambient casing temperatures measured around 32°C and drive bays stabilizing at just 35°C under load.

In terms of acoustic performance, the DS425+ is equipped with two 92mm fans, and noise testing shows the system remains quiet enough for close-proximity deployment. In idle mode with the fans on their lowest profile, it registers a sound level between 36 to 38 dB(A), which increases only moderately under load or at medium fan speed. Even when the system was manually set to full fan speed with high drive activity, noise output peaked at 53 dB(A)—still manageable for most non-silent workspaces. This operational profile makes the DS425+ appealing to users seeking a low-maintenance NAS that can be discreetly placed in a shared room, office, or AV rack without introducing unwanted distraction or thermal buildup.

This power and noise behavior also helps prolong component lifespan, particularly in warmer climates or enclosed cabinets, and supports use cases like 24/7 media server operation, offsite backups, or even small-scale CCTV archiving. Importantly, despite these low operating figures, the DS425+ still maintains stability and consistent throughput thanks to the efficiency of the J4125 processor and DSM’s power-aware service management. These characteristics, often underappreciated in specs alone, make it especially suitable for those who want reliable long-term uptime without high energy costs or acoustic interference.

Memory Limitations and Unorthodox Upgrade Path

The DS425+ comes with 2GB of DDR4 memory soldered directly to the motherboard, which is low by 2025 standards even for entry-level NAS devices. While it includes an additional memory slot that allows for the installation of a single 4GB module, the system officially supports a maximum of just 6GB of total RAM. This is an unusual and restrictive configuration, especially when many modern NAS devices now ship with 4GB or 8GB by default, and support 16GB or more—sometimes with dual-channel configurations for better performance. Synology’s strict validation policy also means that only their branded RAM (e.g. D4NESO-2666-4G) is fully supported, and installing third-party modules can trigger warnings in DSM or potentially void support coverage.

This memory ceiling becomes problematic when running DSM features that scale with RAM usage, such as Synology Drive, Snapshot Replication, Virtual Machine Manager, or Surveillance Station. As observed during testing, the DS425+ routinely used 27–38% of its available memory at idle, even without third-party packages installed. This is largely due to DSM’s intelligent memory caching system, which improves performance but leaves little headroom for user-defined workloads. Once additional services or multimedia indexing tasks are introduced, memory utilization climbs quickly, increasing the risk of slowdowns, swap usage, or outright service failure under peak demand.

For users who intend to deploy containers, host multiple camera feeds, or run even a small number of VMs, this limitation may lead to bottlenecks sooner than expected. It also makes the DS425+ a less viable choice for future expansion or multi-user environments. Unlike other NAS brands that allow full third-party upgrade freedom—or systems with dual RAM slots and broader capacity support—Synology’s enforced limitations here represent another example of the platform’s increasingly locked-down approach. For a system marketed to prosumers, the inability to exceed 6GB RAM comfortably is a notable technical and strategic constraint.

Integrated Graphics for Light Media Transcoding

Unlike many NAS units in this price tier, the DS425+ includes an Intel Celeron J4125 processor with integrated Intel UHD Graphics 600, which unlocks hardware-accelerated video decoding and transcoding in supported applications like Plex or Jellyfin. This makes the DS425+ one of the few Synology models in 2025 that still offers integrated GPU support out of the box, especially as newer Synology models with more recent CPUs have increasingly omitted integrated graphics. While the DS425+ is not intended to replace a dedicated media server, its GPU can significantly improve performance and efficiency for on-the-fly transcoding of formats like H.264 and H.265 (HEVC), particularly when streaming to remote clients with bandwidth constraints.

In real-world usage scenarios, this means the DS425+ can handle direct streaming and limited transcoding of 1080p content without overwhelming the CPU, provided the source formats are within the GPU’s supported codec list. During Plex testing, the DS425+ performed adequately with one or two 1080p transcodes running simultaneously, and was also able to manage basic 4K downscaling if the codec was natively supported by the hardware. For home users who have mixed devices—such as smart TVs, mobile devices, and tablets that vary in codec support—the presence of hardware transcoding offers improved flexibility without requiring as much manual conversion or format standardization of their media library.

Additionally, Synology’s native multimedia applications such as Surveillance Station and Synology Photos also benefit from GPU acceleration, helping speed up thumbnail generation, indexing, and playback, especially for high-resolution image and video collections. While raw CPU power in the DS425+ is modest by 2025 standards, the inclusion of integrated graphics helps balance out performance for lightweight graphical workloads and makes the system more viable as a general-purpose media hub. For users considering a NAS for Plex, family media streaming, or small business content previews, this capability adds meaningful value—especially since few modern Synology NAS devices still include Intel-based chips with iGPU support.

Outdated CPU Platform and Limited Performance Headroom

The DS425+ ships with the Intel Celeron J4125, a 4-core, 4-thread processor that was originally launched in late 2019. While it offers modest performance and includes integrated graphics, the J4125 is now significantly behind modern alternatives in both efficiency and raw compute power. Intel itself has discontinued the Celeron branding entirely, moving toward newer architectures like Alder Lake-N and Jasper Lake, which offer improved IPC (instructions per cycle), higher core/thread counts, and better thermal efficiency—all while retaining low power consumption. In comparison, the J4125’s aging 14nm Gemini Lake architecture struggles with heavier multitasking, especially when running services like virtual machines, surveillance workloads, or multiple Docker containers in parallel.

Synology has retained this CPU across several generations of its 2- and 4-bay Plus series models, which makes the DS425+ feel less like a generational upgrade and more like a lateral move. During performance testing, the unit handled DSM core tasks and multimedia indexing smoothly, but CPU load increased sharply under heavier tasks such as simultaneous Surveillance Station streams, Hyper Backup routines, or basic VM instances.

Synology DS224+ NAS Memory

This limited headroom constrains the DS425+ to light-to-moderate workloads, and it can bottleneck more quickly than newer systems from other brands using more recent Intel N-series or AMD Ryzen Embedded CPUs. This is especially important as DSM continues to add new features that may increase background resource consumption over time.

Additionally, the CPU’s lack of support for modern instruction sets or features like AVX can limit compatibility with certain Docker containers or third-party applications that expect more recent hardware. While the DS425+ can serve well as a general-purpose file server or light media NAS, it’s not suited for users who anticipate growth into heavier mixed-use deployments. In a 2025 market where many similarly priced NAS units offer 6- or 8-core CPUs and PCIe Gen 3 or 4 support, the DS425+ feels constrained and unlikely to age well for users with evolving or expanding workloads.

Compact Form Factor with Versatile Storage Options

The DS425+ offers a space-efficient chassis design that houses four 3.5″/2.5″ SATA drive bays, along with two M.2 2280 NVMe SSD slots for caching. This provides a versatile platform for users who want flexible storage layouts without moving to a physically larger or more expensive rackmount or tower system.

The vertical orientation of the chassis, measuring just 166 x 199 x 223 mm, makes it easy to deploy the device in tight workspaces, shelving units, or beneath desks—ideal for small offices, home studios, or AV setups where space is at a premium. Despite its small footprint, the device retains full support for key RAID configurations including SHR, RAID 5/6/10, and JBOD, and offers hot-swappable access to the main drive bays for ease of maintenance.

The inclusion of two M.2 NVMe slots on the base of the unit allows users to improve performance through read/write caching without sacrificing primary drive bays. Although these M.2 slots are limited to Synology-verified SSDs and are not usable for storage pools, they can still offer significant boosts to random I/O performance in multi-user environments or when used with demanding workloads like Synology Drive or VM hosting. Combined with support for SSD TRIM and smart cache algorithms within DSM, the system can be tuned to optimize response times during high-access periods without introducing large amounts of memory overhead.

From a practical standpoint, this layout is beneficial for users managing multiple storage tiers, such as a mix of large-capacity HDDs for archiving and faster SSDs for active projects or virtual machines. Furthermore, the DS425+ supports volume expansion using larger capacity drives, RAID migration options (e.g. from Basic to RAID 5 or RAID 5 to RAID 6), and up to 32 internal volumes, giving users enough headroom for future scaling. These features, while standard in DSM, are fully supported in this chassis and make it easier to adapt the NAS as storage needs evolve—without the need to start from scratch or invest in a new enclosure.

Limited I/O and Underwhelming Connectivity for the Price

While the DS425+ introduces a 2.5GbE network port alongside a legacy 1GbE port, the rest of its I/O configuration is relatively limited and arguably outdated compared to competitors in its price range. The system includes just two USB 3.2 Gen 1 ports, both of which operate at 5Gbps rather than the more modern 10Gbps (Gen 2) speeds that are increasingly common in 2025. There is no SD card slot, no eSATA or PCIe expansion slot, and no HDMI output, all of which are features now appearing on rival NAS systems from QNAP, TerraMaster, and UGREEN—even at similar or lower price points. These omissions restrict how the device can be expanded or integrated into more complex workflows, such as direct-attached backup targets, external GPU support, or quick media ingestion.

The presence of only a single 2.5GbE port also imposes a bottleneck for users wanting to make full use of SSD caching or high-throughput RAID configurations. There is no support for link aggregation, as the 1GbE and 2.5GbE ports cannot be bonded in a meaningful way, and the system lacks support for 5GbE or 10GbE—either onboard or via expansion. In scenarios where large video files, virtual machine images, or multiple users are simultaneously accessing data, the NAS may become network-bound more quickly than other models with multi-GbE or SFP+ connectivity.

Furthermore, while DSM offers support for USB peripherals such as external drives and UPS devices, the limited port count and bandwidth mean there is little headroom for simultaneous external expansions, and the brand limits the support of USB peripherals for security reasons. For example, attaching both an external drive and a USB-connected UPS may require unplugging one to rotate in another device. This may not impact casual home users, but for power users managing workflows like video editing, offsite rotation backups, or multi-location file sync, this level of I/O flexibility feels dated. When factoring in the DS425+’s pricing, which places it near many NAS models with more expansive I/O, this minimalism can be a significant drawback.

Strong Security Framework and Proactive Vulnerability Management

The DS425+ benefits from Synology’s broader emphasis on security, offering a robust framework for data protection, secure remote access, and proactive threat mitigation. DSM includes built-in tools such as firewall rules, auto-blocking of suspicious IPs, HTTPS configuration, and native integration with Let’s Encrypt for SSL certificates. Two-factor authentication (2FA) can be enforced per user or globally, and built-in VPN server options (including OpenVPN and L2TP/IPSec) provide secure tunnels for remote workers or offsite access. For businesses or power users hosting sensitive data, the inclusion of AES-NI hardware encryption ensures efficient at-rest protection without drastically impacting system performance.

What sets Synology apart is its ongoing commitment to security research and response. The company operates a public-facing Product Security Incident Response Team (PSIRT) and regularly updates a detailed security advisory page disclosing vulnerabilities and their mitigations. Synology also participates in Pwn2Own, a white-hat hacking competition, and runs internal bug bounty programs to uncover and patch exploits before they are discovered in the wild. This culture of transparency and preemptive action is especially valuable as NAS devices become more frequently targeted by malware and ransomware threats, particularly those exposed to the internet or used in hybrid cloud workflows.

Additionally, many DSM apps include granular permission management, audit logs, and user-based access rules, giving administrators tight control over file shares, backup targets, and service access. Synology’s Hybrid Share and Cloud Sync tools support end-to-end encryption and offer options to decouple cloud storage keys from the local system, further strengthening data sovereignty. For users concerned with long-term viability and platform trust, Synology’s structured and well-documented security practices help the DS425+ stand out against competitors that may offer more hardware but less attention to software and infrastructure hardening. This makes it a viable choice for users prioritizing data safety in either personal or professional contexts.

Questionable Long-Term Value Amid Shifting Synology Strategy

Another concern with the DS425+ is its position within Synology’s evolving product strategy, which raises questions about long-term support and ecosystem focus. Synology has recently been expanding its BeeStation and BeeStation Plus lines—pre-populated, user-friendly NAS solutions that share similar hardware (in some cases, the same J4125 CPU), but are bundled with drives and offer a simplified DSM variant tailored for general consumers. These systems, while more limited in scope, are marketed as turnkey alternatives with lower pricing and fewer user-configurable components. The DS425+, by contrast, sits awkwardly between Synology’s increasingly restrictive hardware requirements and the emerging shift toward closed, fully managed platforms.

This change in trajectory creates uncertainty for prospective buyers looking for a long-term investment. If Synology continues prioritizing its proprietary hardware and software pairings, users who prefer modularity, drive freedom, or advanced customization may find themselves increasingly constrained. As already noted, the DS425+ enforces tight compatibility rules, limits memory expansion, and restricts NVMe usage to caching only. At the same time, Synology is streamlining its portfolio around devices with even stricter limitations but more mass-market appeal. This raises the possibility that traditional “Plus” models like the DS425+ may be sidelined or see fewer feature updates in future DSM releases, as Synology shifts development toward more controlled environments.

From a cost perspective, the DS425+ is priced around $519, placing it uncomfortably close to more powerful third-party NAS systems that offer better CPUs, more RAM, and greater I/O flexibility. Competing brands frequently offer 4-bay systems with modern N-series Intel processors or embedded AMD chips, 8GB+ of memory, and faster networking, often for the same or lower price. As a result, the DS425+ risks being outclassed not only by its competition, but by Synology’s own growing lineup of prepackaged solutions. Users investing in the DS425+ today may find themselves limited not just by current specs, but by an ecosystem slowly drifting away from the prosumer and enthusiast segment this model was originally meant to serve.

Synology DS425+ NAS Review – Conclusion and Verdict

The Synology DS425+ presents a mixed proposition in 2025. On one hand, it remains a competent 4-bay NAS solution for users prioritizing software integration, low power operation, and quiet, reliable 24/7 usage. Its support for DSM 7.2 and the full suite of Synology applications—ranging from Active Backup to Surveillance Station and Synology Drive—makes it a strong turnkey platform for general-purpose storage, backup, and multimedia needs. Integrated graphics give it an edge in light media streaming scenarios, and its support for M.2 NVMe caching allows for performance optimization without occupying drive bays. It’s a well-built device that continues to “just work,” particularly in home and small office setups where reliability, simplicity, and refined software matter more than raw horsepower.

However, these strengths are increasingly offset by hardware limitations and Synology’s increasingly restrictive ecosystem. The soldered 2GB of RAM, locked 6GB memory ceiling, outdated CPU, limited I/O, and especially the enforced use of Synology-only drives all hinder flexibility and long-term value. When compared to similarly priced alternatives from competing NAS vendors—many of which offer newer processors, faster ports, and full hardware freedom—the DS425+ can feel constrained and overpriced. In addition, Synology’s expanding focus on pre-populated BeeStation devices suggests a possible shift away from traditional DIY-friendly models like this one. For users who are already invested in the Synology ecosystem or who value DSM above all else, the DS425+ may still be a worthwhile buy. But for those seeking hardware scalability, third-party compatibility, or better price-to-performance, it may be worth considering other options or waiting to see how Synology’s roadmap evolves.

Synology DS425+ NAS

Amazon in Your Region for the Synology DS425+ NAS @ $519

B&H for the Synology DS425+ NAS @ $519.99

Synology DS425+ NAS Pros Synology DS425+ NAS Cons
  • DSM 7.2 Operating System: Offers a rich suite of first-party apps including Active Backup, Surveillance Station, Synology Drive, and Hyper Backup with strong cross-platform support.

  • Low Noise and Power Consumption: Quiet 92mm fan setup and efficient power usage (~28W under load) make it ideal for 24/7 operation in home or office environments.

  • Integrated Graphics (Intel UHD 600): Supports light Plex or Jellyfin hardware transcoding for 1080p media, a rare inclusion in Synology’s 2025 lineup.

  • Compact and Versatile Design: Small chassis with 4 SATA bays and 2 M.2 NVMe slots for cache acceleration, supporting RAID 5/6 and SHR.

  • Strong Security Posture: Includes 2FA, SSL, VPN tools, and a proactive PSIRT vulnerability disclosure program for ongoing protection.

  • Good Thermal Management: Maintains stable drive and system temperatures (~32–35°C) even under moderate load.

  • Broad Software Ecosystem: Additional apps like Synology Photos, Chat, Office, and Drive make it a multi-functional NAS beyond just storage.

  • Strict Drive Compatibility: Requires Synology-only HDDs and SSDs for full functionality; third-party drives trigger warnings or are blocked entirely.

  • Outdated CPU Platform: Uses a 2019-era Intel J4125 CPU, now underpowered compared to newer Intel N-series or AMD embedded chips.

  • Memory Upgrade Limitations: Comes with 2GB soldered RAM, upgradeable to only 6GB total, and officially supports Synology-branded memory only.

  • Limited Connectivity and I/O: No PCIe, eSATA, or SD card support; only one 2.5GbE and two 5Gbps USB ports—lagging behind competitors in 2025.

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

GMKTec G9 Ver.2 NAS Review – Cooler Now?

Par : Rob Andrews
22 août 2025 à 18:00

GMKTec G9 NAS (New Improved Cooling Version) Review

Important – My original review of the GMKTec G9 NAS in it’s original design can be found HERE on YouTube and HERE on the NASCompares blog.

The GMKTec G9 NucBox NAS has re-emerged in mid-2025 with a revised cooling design, following a wave of thermal criticism directed at the original release earlier in the year. Still marketed as an SSD-only NAS aimed at home and small office environments, the G9 maintains its core identity—a compact enclosure powered by Intel’s N150 quad-core processor, soldered LPDDR5 memory, and four M.2 NVMe SSD bays. The G9’s primary appeal continues to be its affordability, silent operation, and dual-use flexibility as both a NAS and lightweight desktop system, thanks to the inclusion of Windows 11 Pro and Ubuntu out of the box. However, early buyers and reviewers, including this channel, highlighted persistent thermal issues affecting SSD performance and overall system reliability under load, leading to thermal throttling even during idle states in warmer environments.

In response, GMKTec has issued an updated version of the G9 that retains the same form factor, internal hardware, and I/O but incorporates enhanced passive ventilation on the side and top panels. Though subtle at first glance, these structural changes are designed to improve airflow over the CPU and SSD compartments without increasing noise levels or power draw. In this updated review, we will revisit all aspects of the G9’s design, connectivity, and system behaviour under continuous load, while highlighting what exactly has changed and what remains untouched. The new G9 model introduces targeted thermal improvements, but beyond ventilation, it leaves the original architecture and feature set entirely intact.

GMKTec G9 Ver.2 NAS Review – Quick Conclusion

The improved GMKTec G9 NAS represents a targeted refinement rather than a full redesign, addressing the primary weakness of the original model: inadequate thermal performance. The updated version introduces enlarged ventilation cutouts on the top panel above the CPU fan and replaces the pinhole rear exhaust with a wider mesh, leading to measurable but modest reductions in system temperatures. In 48-hour test scenarios using UnRAID with hourly backup tasks, SSDs without heatsinks in the original unit reached idle temperatures of 66–67°C, while the revised model brought this down to 56–57°C. CPU vent temperatures similarly dropped from 54–56°C to 50–52°C, and rear I/O areas cooled by 5–7°C. These improvements enhance stability during sustained I/O activity but do not eliminate the need for additional SSD cooling—particularly in environments where ambient heat or multi-user access is expected. Internally, the hardware remains unchanged: Intel N150 CPU, 12GB of non-upgradable LPDDR5 memory, four PCIe Gen 3 x2 M.2 NVMe bays, and dual 2.5GbE ports, with storage and network throughput consistent with entry-level expectations. Power consumption remains efficient (19–30W), and noise levels stay low at under 40dB, making it suitable for always-on deployment. However, the continued use of a plastic chassis and base panel still limits effective heat dissipation, and the absence of thermal sensors or fan curve controls further limits its thermal adaptability. Compared to the Xyber Hydra—featuring a metal base, better SSD thermal contact, and 16GB RAM—the G9 now performs better than before but still falls short of what its hardware could achieve with more thoughtful engineering. For users willing to invest in SSD heatsinks and mindful of its limitations, the G9 is now a reasonably balanced entry NAS, though not the strongest performer in its tier.

BUILD QUALITY - 6/10
HARDWARE - 7/10
PERFORMANCE - 6/10
PRICE - 10/10
VALUE - 9/10


7.6
PROS
👍🏻Affordable price point for a 4-bay NVMe NAS with dual 2.5GbE (typically under $200).
👍🏻Support for up to 32TB of SSD storage across four M.2 NVMe slots.
👍🏻Low power consumption (19W idle, ~30W under load) suitable for 24/7 operation.
👍🏻Improved passive airflow design compared to the original model (lower overall temps).
👍🏻Dual USB-C power input options for flexible cable management.
👍🏻Silent operation, even during sustained activity (under 40dB).
👍🏻Pre-installed OS (Windows 11 Pro and Ubuntu) allows for flexible initial use.
👍🏻Compact, space-saving enclosure ideal for desktop setups or constrained environments.
CONS
👎🏻Cooling Improvements are relatively small and No bundled SSD heatsinks, making thermal throttling likely without aftermarket cooling.
👎🏻Non-upgradable 12GB LPDDR5 RAM limits scalability for heavier workloads.
👎🏻Plastic chassis and base panel still hinder full thermal dissipation from SSDs.
👎🏻The Introduction of other NAS such as the Beelink ME Mini and Xyber Hydra has provided appealing alternatives to this device right now

Where to Buy?

GMKTec G9 Ver.2 NAS Review – Design and Storage

The GMKTec G9 continues to use a compact, matte-black plastic chassis that is closer in design to a mini PC enclosure than a traditional NAS. The vertical design conserves desk space, and the front-facing panel remains clean and understated, with no visible drive trays or status indicators beyond the power button and basic branding. As with the original model, the chassis sacrifices the durability and thermal advantages of metal in favour of a lightweight, cost-efficient build. This makes the device appealing for users with space constraints, but it also signals the system’s budget positioning. The plastic enclosure, while solid enough for day-to-day use, is not especially resistant to heat buildup during sustained I/O operations, which remains one of its most persistent limitations.

Internally, the system supports four M.2 NVMe SSDs, each connected via PCIe Gen 3 x2 lanes. This setup allows up to 32TB of total SSD storage, assuming the use of high-capacity 8TB NVMe drives. The use of SSDs rather than traditional 2.5″ or 3.5″ hard drives enables near-silent operation, faster access times, and lower power consumption. However, SSD-only NAS designs like this one typically require better airflow and heatsinking to mitigate thermal throttling—especially during RAID operations or when used as a media server with multiple concurrent reads and writes. The G9 supports basic RAID via third-party NAS OSs, but due to PCIe lane limitations and lack of onboard RAID management, advanced configurations will rely entirely on software.

One of the primary complaints in the original model was the absence of SSD heatsinks and the system’s poor natural heat dissipation. While pre-built units from GMKTec occasionally shipped with low-profile aluminum heatsinks, user-added drives often ran hot, especially under sustained write loads. The M.2 slots sit stacked vertically inside a cramped compartment behind the lower rear panel, and when combined with a sealed plastic baseplate, heat quickly accumulates. This design still persists in the new version, and although airflow has been improved through the external vents, the interior thermal behaviour remains heavily dependent on user-supplied heatsinks and ambient cooling conditions. Users deploying high-endurance SSDs or running frequent write-intensive tasks will need to factor this into their thermal strategy.

The internal layout is efficient but fixed. There are no modular trays or hot-swap capabilities for the SSDs, and all upgrades must be performed by opening the device. Memory is soldered and therefore non-upgradable, and while there’s internal eMMC storage used for the pre-installed OS, most users will opt to install TrueNAS, UnRAID, or OpenMediaVault onto one of the NVMe drives for full NAS functionality. The passive cooling approach is unchanged in its core design: two internal fans (one for CPU, one system) move air through the case, but without direct thermal contact to the SSDs or a conductive enclosure material, this airflow has limited reach. Placement of the unit in a well-ventilated space remains essential.

The only real physical design changes in the new version are to the external ventilation panels. GMKTec has replaced the original pinhole-style vent on the rear side with a wider mesh grille, which now spans a greater portion of the side panel. Additionally, the top panel has been revised to include a broader cutout directly above the CPU fan, allowing a clearer exhaust path for rising hot air. However, the plastic base and internal heat chamber structure remain unchanged, meaning SSD temperatures are still a potential concern—especially without aftermarket cooling. The updated G9 retains the same core storage architecture as the original, but introduces modest improvements to airflow via enhanced external ventilation.

GMKTec G9 Ver.2 NAS Review – Internal Hardware

At the center of the GMKTec G9 is the Intel N150 processor, a quad-core, four-thread CPU built on the 10nm Twice Lake architecture. Designed for ultra-efficient computing, it operates at a modest 6W TDP, making it ideal for passive or semi-passive cooling environments like compact NAS systems. The N150 runs at a 1.0GHz base frequency and boosts up to 3.6GHz under load, delivering just enough headroom for tasks like SMB/NFS sharing, low-volume web hosting, and basic media playback. Its integrated Intel UHD Graphics support up to 4K at 60Hz output via HDMI or USB-C DisplayPort alt mode, though without hardware acceleration for modern codecs like AV1, its suitability for on-the-fly transcoding is limited. The CPU also lacks advanced server-grade features like ECC memory support, SR-IOV, or high-bandwidth PCIe 4.0 lanes, which reflects its role in cost-conscious, entry-level applications.

The onboard 12GB of LPDDR5-4800 memory is soldered and cannot be replaced or upgraded, a design choice that simplifies manufacturing and keeps costs down but limits versatility in heavier multitasking scenarios. In practice, the memory is sufficient for running one or two lightweight NAS services alongside file sharing, or even a basic Docker container or two, but its soldered configuration leaves no room for future expansion. Notably, the memory is dual-channel, which does help offset some performance constraints—especially in scenarios where the integrated graphics or CPU requires memory bandwidth access. While most users won’t hit the ceiling of 12GB under standard NAS tasks, advanced setups involving active sync with cloud platforms, large-scale Plex libraries, or multiple concurrent rsync/FTP sessions could find the limitation restrictive. Also, unlike some similarly priced competitors, there’s no accessible BIOS option to reserve RAM for cache acceleration, which could have improved responsiveness under heavier I/O loads.

In terms of storage hardware, the G9 offers four M.2 NVMe slots with PCIe Gen 3 x2 interfaces, a configuration that supports up to 32TB of total storage using current consumer-grade drives. Each slot is keyed for M-Key NVMe SSDs and arranged vertically inside the enclosure, though installation requires unscrewing the rear panel and working within the confined internal cavity. The system’s internal PCIe lane distribution is handled through multiple ASMedia ASM1182e switch chips, which divide the CPU’s limited PCIe bandwidth across all four NVMe slots and the dual 2.5GbE interfaces. While the Gen 3 x2 interface is technically capable of 2GB/s per slot, real-world speeds are often lower during concurrent access due to the shared architecture.

This design also limits SSD passthrough capabilities in virtualized environments, and users aiming for high-speed SSD RAID configurations (RAID 5 or 10, for example) may encounter inconsistent write speeds. Additionally, there is no hardware-level thermal throttling safeguard tied to fan curves or SSD temperature sensors, so thermal build-up under load could directly affect sustained throughput unless active cooling measures are installed. The internal hardware of the improved GMKTec G9 remains completely unchanged from the original release—no CPU, RAM, SSD slot layout, or controller chip has been altered in the updated version.

Component Details
CPU Intel N150 (4 Cores / 4 Threads, 1.0–3.6GHz)
Architecture Intel Twice Lake (10nm)
TDP 6W
Memory 12GB LPDDR5-4800 (Dual-channel, Non-upgradable)
Integrated Storage 64GB eMMC (for pre-installed Windows/Ubuntu)
NVMe Support 4 x M.2 NVMe SSDs (PCIe Gen 3 x2 interface)
Max Storage Up to 32TB (with 4 x 8TB drives)
Graphics Intel UHD (4K @ 60Hz via HDMI & USB-C DP)
PCIe Management ASMedia ASM1182e Switches (x2)
Other Features AES-NI, VT-x, VT-d, Speed Shift, ACPI 6.2

GMKTec G9 Ver.2 NAS Review – Ports and Connections

The GMKTec G9 offers a well-rounded I/O configuration that reflects its hybrid role as both a compact NAS and lightweight desktop appliance. It features two 2.5GbE LAN ports, both of which are directly linked to the CPU via PCIe lanes and can be configured for link aggregation, failover, or isolated network segments. In real-world testing, these ports easily saturate their 312MB/s bandwidth under SMB and iSCSI workloads, making the G9 more capable than traditional Gigabit NAS units. The absence of 10GbE is notable, especially for users planning to deploy NVMe RAID arrays or work in content-heavy environments, but at this price point and power envelope, dual 2.5GbE is still a competitive offering. Notably, both NICs support Wake-on-LAN (WoL), making the system convenient for remote access or low-power automation setups.

For peripheral and expansion support, the G9 includes three USB-A 3.2 Gen 2 ports and a single USB-C 3.2 Gen 2 port, each capable of 10Gbps data transfer. The USB-C port also supports DisplayPort Alt Mode, allowing it to function as an additional video output alongside the two HDMI 2.0 ports on the rear panel. These HDMI ports support 4K resolution at 60Hz and are positioned for users who may wish to operate the G9 as a silent desktop system or a local media playback device via Kodi, Jellyfin, or Plex. However, the G9 does not include USB 4.0, Thunderbolt, or PCIe expandability, limiting options for future upgrades such as external GPUs, additional NICs, or DAS enclosures. In testing, connected peripherals such as USB drives and webcams were recognized instantly under Ubuntu and Windows, confirming basic plug-and-play compatibility.

Power delivery is handled via USB-C PD input, using a 65W external power brick that ships with the unit. Uniquely, the updated G9 introduces a small but notable change: dual USB-C power input points, allowing users to select which side of the device receives the power cable. This change doesn’t increase power capacity or enable redundancy, but it can improve cable management depending on the G9’s orientation on a desk or shelf. However, using one of the USB-C ports for power inherently sacrifices a high-speed data port—an unfortunate trade-off given the unit’s lack of PCIe or expansion bays. No dedicated power switch is present; the unit powers on via the front button or Wake-on-LAN and remains always-on unless shut down via software or OS-level scripts. Compared with the original G9, the only change to I/O is the addition of the second USB-C power input for layout flexibility—otherwise, all ports, speeds, and layout remain the same.

Port Type Quantity Specification
2.5GbE LAN 2 Realtek RTL8125, Link Aggregation Supported
USB-A 3.2 Gen 2 3 10Gbps, Backward Compatible
USB-C 3.2 Gen 2 1 (+1 PD) 10Gbps, DisplayPort Alt Mode
HDMI 2.0 2 4K @ 60Hz
Power Input (USB-C) 2 65W USB-C PD (Only 1 used at a time)
Wake-on-LAN Supported Both NICs
Audio None No 3.5mm jack or digital out

GMKTec G9 Ver.2 NAS Review – Tests and Performance

In synthetic and real-world benchmarks, the GMKTec G9 delivers the level of performance expected from an Intel N150 system with PCIe Gen 3 x2 storage. Read speeds per drive peaked around 1.4–1.5GB/s, aligning well with the theoretical limit of the x2 interface. Write speeds were notably more volatile, ranging between 400–600MB/s depending on SSD type, ambient temperature, and active processes. These numbers, while adequate for file serving, backups, and Docker apps, showed clear limitations when the system was pushed into simultaneous multi-disk writes or parity-based RAID configurations. The presence of ASMedia ASM1182e PCIe switches likely contributes to this variance, as downstream PCIe allocation under pressure introduces contention among the SSD lanes. In typical NAS tasks like SMB and NFS file transfers, however, performance remained consistent and stable, particularly when network activity was confined to single-user access or sequential transfers.

Thermal behaviour is where the most scrutiny falls, given the G9’s original design flaws. Under a controlled 48-hour test using UnRAID with scheduled hourly backups and mixed-use read/write activity, the older G9 unit routinely idled at 54–56°C, with peaks of 66–67°C on SSDs lacking heatsinks.

The improved model saw modest thermal gains, with idle temps reduced to 50–52°C at the CPU vent and around 56–57°C on the SSD layer. Some of this improvement came from the revised ventilation—namely the expanded top-panel fan cutout and rear-side mesh panel—yet the base remained the same thermally isolated plastic panel, and internal fan hardware remained unchanged.

Notably, temperatures around the rear I/O ports dropped by 5–7°C between versions, suggesting that airflow efficiency around the motherboard has improved even if core thermal load remains a challenge.

In terms of noise and power, the G9 performs admirably. Even under load, fan noise remained below 40dB, with idle operation being nearly silent. Power consumption remained within the expected range—19–21W idle and up to 30W under continuous activity—even during the 48-hour write test.

BIOS-level tuning is possible and can slightly reduce power draw or adjust fan thresholds, but no advanced power scaling or fan curve customization is exposed via software in stock OS images. More demanding operating systems like TrueNAS Scale ran stably on the G9 but did little to mitigate thermal behaviour, reinforcing the importance of user-added SSD heatsinks regardless of OS.

The lack of thermal sensors per SSD slot or fan feedback control means sustained operations should be closely monitored in hotter climates or enclosed environments.

Nowhere is the conversation about thermal and hardware design more relevant than in comparison to the Xyber Hydra, a near-identical system that appears to share much of its component sourcing with the G9—right down to the GMK-branded fans. The Hydra ships with 16GB of DDR5 memory, a metal base panel, and most notably, a thermal pad that bridges SSDs to the metal shell, allowing for actual heat transfer rather than passive convection. In direct tests, the Hydra consistently posted 5–10°C lower SSD temps under identical workload, with idle SSDs (no heatsinks) registering around 47–49°C versus 56–57°C in the improved G9.

Though the Hydra lacks branding clarity around its manufacturer, the design appears to be what the G9 should have evolved into: same layout and CPU, but better thermals, more memory, and more thought put into SSD dissipation. In conclusion, while the improved GMKTec G9 offers better thermals than its predecessor, the Xyber Hydra outperforms both G9 variants in every thermal category, making it the superior choice if cooling and memory capacity are priorities.

Metric Original G9 Improved G9 Xyber Hydra
Peak Read Speed (NVMe) ~1.4–1.5 GB/s Same Same
Sustained Write Speed ~400–500 MB/s Slightly higher Slightly higher
Idle CPU Vent Temp 54–56°C 50–52°C 47–49°C
SSD Temps (No Heatsink) 66–67°C 56–57°C 47–49°C
Rear I/O Temp 55–57°C 48–50°C 44–46°C
Power Usage (Idle/Load) 19W / 30W 19–21W / 30W 18W / 28W
Noise Level (Max) ~39–40dB Same Slightly lower
Thermal Pad/Metal Contact None None Yes (Metal Base)

GMKTec G9 Ver.2 NAS Review – Verdict and Conclusion

The GMKTec G9, in its improved form, shows that the brand has listened—albeit cautiously—to thermal concerns raised by users and reviewers of the original model. The changes introduced in this updated version are minimal but measurable: better ventilation on the top panel and side mesh grille allow modest airflow gains, which result in lower surface and SSD temperatures across the board. Yet, GMKTec has stopped short of making any internal or structural upgrades that would more directly resolve thermal issues, such as introducing a metal baseplate, bundling SSD heatsinks, or adjusting the system’s internal fan architecture. All other hardware elements—CPU, memory, SSD configuration, I/O, BIOS, and software readiness—remain identical. As a result, while the device performs better in heat dissipation than before, it does so by a margin that may not justify an upgrade for existing G9 users. First-time buyers, however, may find it to be a safer choice now—particularly when paired with aftermarket heatsinks and used in moderate workloads.

However, the presence of the Xyber Hydra in the same price bracket poses a critical challenge to the G9’s value proposition. Offering the same N150 CPU, more memory, and a far superior thermal design with an integrated metal heat-spreading base, the Hydra addresses nearly every lingering complaint about the G9 without altering the system’s core layout. For prospective buyers deciding between the two, the G9’s only advantages now lie in its wider availability, slightly more recognizable branding, and marginally more mature firmware support. If those factors matter less than thermal reliability, long-term SSD health, and RAM headroom, then the Hydra is the more complete solution. Ultimately, the improved GMKTec G9 is a more stable and better-performing version of its former self, but its restrained upgrades feel like a missed opportunity in a market where near-clones have already moved ahead in meaningful ways.

Where to Buy?
PROs of the GMKTec G9 NAS CONs of the GMKTec G9 NAS
  • Affordable price point for a 4-bay NVMe NAS with dual 2.5GbE (typically under $200).

  • Support for up to 32TB of SSD storage across four M.2 NVMe slots.

  • Low power consumption (19W idle, ~30W under load) suitable for 24/7 operation.

  • Improved passive airflow design compared to the original model (lower overall temps).

  • Dual USB-C power input options for flexible cable management.

  • Silent operation, even during sustained activity (under 40dB).

  • Pre-installed OS (Windows 11 Pro and Ubuntu) allows for flexible initial use.

  • Compact, space-saving enclosure ideal for desktop setups or constrained environments.

  • Cooling Improvements are relatively small and No bundled SSD heatsinks, making thermal throttling likely without aftermarket cooling.

  • Non-upgradable 12GB LPDDR5 RAM limits scalability for heavier workloads.

  • Plastic chassis and base panel still hinder full thermal dissipation from SSDs.

  • The Introduction of other NAS such as the Beelink ME Mini and Xyber Hydra has provided appealing alternatives to this device right now

 

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

DS1825+ vs DXP8800 PLUS NAS – Synology or UGREEN for your Data?

Par : Rob Andrews
20 août 2025 à 18:00

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Which Should You Buy?

In 2025, the market for high-capacity 8-bay NAS systems has become more competitive than ever, with traditional leaders like Synology now facing serious contenders from newer brands such as UGREEN. The Synology DS1825+ represents the company’s latest flagship in the Plus series, incorporating a more restrictive hardware ecosystem and a focus on long-term software support, surveillance integration, and backup solutions. In contrast, the UGREEN DXP8800 Plus leans heavily into raw hardware capability and customization, offering an unlocked platform for power users and DIY enthusiasts.

This head-to-head comparison explores both systems in terms of design, internal specifications, external connectivity, operating systems, and service ecosystems. Beyond surface specs, we’ll also assess real-world usability, third-party compatibility, and the broader implications of each system’s approach to expansion and user control. Whether you’re choosing a NAS for Plex, virtual machines, business continuity, or scalable 10GbE storage, this article aims to clarify which of these two NAS units better fits different user scenarios in 2025 and beyond.

Check Amazon for the Synology DS1825+

$1149.99

 

Check AliExpress for the Synology DS1825+

$1149

Check Amazon for the UGREEN DXP8800 Plus

$1349.99

 

Check AliExpress for the UGREEN DXP8800 PLUS 

$1149

Quick Summary of the Synology DS1825+ NAS

Synology DS1825+ NAS Review HERE

The Synology DS1825+ is an 8-bay desktop NAS that marks a significant shift in the company’s approach to hardware and compatibility. Equipped with the AMD Ryzen Embedded V1500B processor—a 4-core, 8-thread chip running at 2.2GHz —this system balances power efficiency with performance across general file operations, virtualization, and media hosting. It includes support for up to 32GB of ECC DDR5 memory (2x SODIMM, arriving with 8GB by default), two M.2 NVMe slots for Synology-only SSD caching, and an onboard 10GbE port alongside three USB 3.2 Gen 1 ports. However, Synology’s controversial locked ecosystem continues here, restricting users to only Synology-branded drives for full support and access to storage pools, along with limited use of the NVMe bays strictly for cache, not storage.

While its internal hardware is more capable than previous Plus series models, the DS1825+ removes several features seen in past units. By default, it arrives with 2x 2.5GbE network ports, with the option to scale upto 10GbE with the use of a 1st party upgrade PCIe card, but at this pricepoint many users wuld expect 10GbE as standard. The shift to DSM 7.2 brings a refined software experience, including native Active Backup for Business, Hyper Backup, Surveillance Station, and full Docker support. However, DSM’s increasing reliance on Synology’s own hardware and subscription services, such as C2 Surveillance Proxy and Synology Drive Server, makes it harder for users to customize or expand without sticking to Synology’s ecosystem. Overall, the DS1825+ is best suited for users who want an integrated, secure, and reliable NAS experience with minimal manual setup, provided they are comfortable with the tighter hardware constraints.

Quick Summary of the UGREEN DXP8800 PLUS NAS

UGREEN DXP8800 PLUS NAS Review HERE

The UGREEN DXP8800 Plus is an 8-bay NAS solution that positions itself as a powerful, open-platform alternative for users seeking greater control over hardware and software customization. At the heart of the system is the 8-core, 16-thread Intel Core i5-1235U processor, paired with 8GB of DDR5 memory (expandable up to 64GB), but lacks support for ECC memory. Unlike its Synology counterpart, the DXP8800 Plus supports a much wider range of third-party hard drives and SSDs, and offers 2x Gen 4×4 M.2 NVMe slots that can be used not only for cache but also for primary or tiered storage, depending on the user’s operating system. This flexibility is backed by a user-serviceable layout and BIOS access, which allows full compatibility with alternative NAS OS options such as TrueNAS SCALE, UnRAID, or OpenMediaVault.

Connectivity is another area where the DXP8800 Plus stands out. It features two native 10GbE (RJ45) ports, two 2.5GbE ports, and dual USB4/Thunderbolt 4 ports, dramatically expanding external storage, docking, and display capabilities. This, combined with onboard HDMI output and front-accessible USB 3.2 ports, makes it far more versatile for media creation, backup workflows, and even lightweight workstation use. However, the DXP8800 Plus does not come with a polished first-party NAS operating system—UGREEN’s UGOS Pro remains in early stages, and lacks many of the mature backup, surveillance, and cloud services found in DSM. As such, the DXP8800 Plus is ideal for tech-savvy users who value open architecture, higher hardware flexibility, and self-managed software ecosystems over out-of-the-box turnkey simplicity.

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Design and Storage

The Synology DS1825+ maintains the familiar chassis style used in the Plus series, combining functionality with conservative aesthetics. It features a full-sized 8-bay front panel with lockable trays, designed for tool-less insertion of 3.5” SATA drives and optional 2.5” adapters. The main body is a mix of steel and plastic, with a focus on rigidity and reduced vibration. The system lacks any onboard display or LCD, offering only basic LED indicators for system status, drive activity, and alerts, which may frustrate users seeking at-a-glance diagnostics. Access to internal components like the DDR5 ECC RAM and dual M.2 NVMe slots requires removing the top cover and internal caddy brackets, which isn’t as straightforward as it could be—especially given that the NVMe slots are only usable for cache and require Synology-branded drives. Thermal management relies on dual 120mm rear-mounted fans, which operate quietly but are non-replaceable without voiding warranty due to the proprietary fan harness. Physically, the NAS is slightly larger than competing 8-bay units and lacks rubberized feet or vibration isolation, which may be relevant for users placing it on shared work surfaces or desks.

The UGREEN DXP8800 Plus delivers a contrasting design focused on space efficiency, cooling, and user-accessibility. The NAS is housed in a durable metal shell with perforated side panels and a high-density internal structure. Despite its smaller footprint, it manages to accommodate eight SATA bays, two 4X4 M.2 NVMe slots, two SODIMM slots, and active cooling—all while remaining user-serviceable with just a standard screwdriver. The hot-swap trays are spring-loaded and support tool-less 3.5” drives or 2.5” drives via included screws. Access to RAM and SSD slots is streamlined through a simple internal partition design that doesn’t require full disassembly, making upgrades significantly faster than on the DS1825+. The rear exhaust fan is larger than expected for a device this compact, and although thermals are generally within acceptable limits, our testing showed that M.2 SSDs running at PCIe Gen 3 speeds did reach over 65°C during sustained I/O, especially when mounted without aftermarket heatsinks. Unlike Synology, UGREEN includes front-mounted USB 3.2 Gen 2 ports (Type-A and Type-C), ideal for creators and users who frequently move large projects or footage onto the system using direct-attached storage.

When it comes to storage flexibility, the differences are stark. Synology’s DS1825+ enforces a strict hardware compatibility policy, where only Synology-certified HDDs (such as the HAT5300) and SSDs (SAT5200 or SNV3410/3510) are officially supported. Drives outside this list may trigger warnings, be ineligible for pools, or lose access to SMART health readings. NVMe drives cannot be used for storage volumes at all and are locked to caching roles only. These restrictions are enforced by DSM 7.2+ and persist even with the system fully updated.

By contrast, the UGREEN DXP8800 Plus places no such limits. Any SATA or NVMe drive can be used, and users can create pools across mixed-capacity and mixed-brand disks, including enterprise-grade drives. Storage volumes can be configured freely in supported OS environments, and the two M.2 slots can act as primary storage, tiered ZFS vdevs, or cache depending on the OS—TrueNAS SCALE, for instance, recognized all M.2 drives and allowed custom pool creation without issue. This makes UGREEN’s system more attractive to users with existing drives or specific ZFS/Btrfs layouts in mind.

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Internal Hardware

he Synology DS1825+ is built around the AMD Ryzen V1500B processor, a 4-core, 8-thread embedded SoC designed specifically for NAS and server workloads. With a fixed base clock of 2.2GHz and no boost functionality, this Zen-based CPU focuses on stability, multi-threaded efficiency, and low power consumption, making it well-suited for consistent background operations like file serving, multi-client backups, and large-scale storage array management. The chip includes AES-NI support for hardware encryption acceleration and offers full compatibility with DSM’s virtualization stack, including Docker and Synology’s Virtual Machine Manager. However, the V1500B lacks an integrated GPU, and the DS1825+ does not support hardware transcoding, making it unsuitable for Plex or media applications that rely on real-time video encoding unless offloaded to cloud services like Synology C2. It’s a reliable and mature processor choice, albeit one that prioritizes stability over flexibility or raw speed.

The DS1825+ ships with 8GB of ECC DDR4 memory (1x SODIMM) installed, with support for up to 32GB across two slots, and ECC is supported on both official and some compatible third-party modules. The internal layout, however, is relatively restrictive. The memory and M.2 slots require tray removal and partial disassembly to access. Synology includes two M.2 NVMe slots that operate at PCIe Gen 3×4, but DSM only allows them to be used for read/write caching and only with Synology SNV3410 or SNV3510 SSDs. These slots are not available for storage pool creation or system boot, regardless of the SSD used. There is no PCIe slot or BIOS access, making this a closed system that enforces Synology’s validation model tightly. While this approach ensures stability, it limits performance tuning and locks users into higher-priced branded components.

The UGREEN DXP8800 Plus uses an Intel Core i5-1235U, a hybrid 10-core (2 performance, 8 efficiency), 12-thread mobile CPU built on the Alder Lake-U architecture. With a boost clock up to 4.4GHz and integrated Intel Xe graphics, it offers both multi-threaded efficiency and hardware video transcoding support via Quick Sync. This is ideal for users running Plex, Jellyfin, or AI-based video analysis locally. The system ships with 8GB of non-ECC DDR4 memory, expandable to 64GB, using standard SODIMM slots. UGREEN’s internal board features 2x M.2 NVMe slots operating at PCIe Gen 4×4 speeds, offering significantly more bandwidth than Synology’s Gen 3 slots. These SSDs can be used for boot, storage pools, or cache, and the system supports a wide range of third-party drives without warnings or restrictions. BIOS access is fully available, allowing installation of operating systems like TrueNAS, UnRAID, or Proxmox. UGREEN’s internal hardware favors openness and customizability, providing users with direct control over performance, expansion, and component choice—at the cost of requiring more technical expertise.

Feature Synology DS1825+ UGREEN DXP8800 Plus
CPU AMD Ryzen V1500B (4C/8T, 2.2GHz) Intel Core i5-1235U (10C/12T, 0.9–4.4GHz)
Architecture Zen (Embedded, 14nm) Alder Lake-U (Hybrid, Intel 7)
Integrated GPU None Intel Xe (Quick Sync support)
Memory 8GB ECC DDR4 (up to 32GB ECC) 8GB DDR4 non-ECC (up to 64GB)
M.2 NVMe Slots 2x PCIe Gen 3×4 (Synology SSDs, cache-only) 2x PCIe Gen 4×4 (Any SSD, storage/cache/boot)
Drive Bays 8x SATA (Synology-only drives recommended) 8x SATA (any brand/size supported)
Expansion Access No PCIe, no GPU, no BIOS access Full BIOS access, OS selectable
Thermal Design 2x 120mm fans, passive CPU cooling 1x rear fan, active CPU cooling
Transcoding Support None (no GPU) Yes (Intel Quick Sync supported)

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Ports and Connections

The Synology DS1825+ delivers a modest and business-focused range of connectivity options, designed primarily for reliability and integration within an IT-managed environment. It includes 2x 2.5GbE RJ-45 LAN ports, offering basic link aggregation or dual-network failover functionality. While this offers faster-than-Gigabit throughput, the lack of 10GbE out of the box may be limiting for users working with large media files or virtualization workloads, particularly in comparison to other 2025 systems.

The system provides 3x USB 3.2 Gen 1 (5Gbps) Type-A ports, all located on the rear, suitable for UPS integration, external storage, or compatible backup devices. In terms of expansion, Synology includes 2x USB Type-C ports, but these are reserved exclusively for connecting official DX525 expansion units. They do not support data transfer, peripherals, or USB-C accessories and serve only as proprietary expansion interfaces. No HDMI, DisplayPort, or audio outputs are included, and there is no SD card reader. This reinforces Synology’s design philosophy: operate headlessly, manage remotely, and keep the system within the bounds of their validated ecosystem.

In contrast, the UGREEN DXP8800 Plus positions itself as a fully-featured, hybrid-use NAS platform with wide-ranging I/O options for prosumers and professionals. It features 2x 10GbE RJ-45 LAN ports—a clear advantage over Synology’s 2.5GbE setup—offering significantly more bandwidth for media editing, VM hosts, or multi-user environments. On the front, UGREEN includes 2x Thunderbolt 4 (40Gbps) ports, which double as high-speed USB-C for peripherals, external drives, or even eGPU enclosures in supported OS setups. The rear provides 2x USB-A ports at 10Gbps, plus 2x USB 2.0 ports, allowing backward-compatible peripheral support. For display, the system includes 1x HDMI port with 8K output support, connected via Intel’s Xe iGPU, as well as a high-speed SD 4.0 card reader—a particularly valuable addition for content creators offloading camera media directly to the NAS. There is also a PCIe x4 slot for optional hardware expansion. This broad I/O layout enables the DXP8800 Plus to function as a headless NAS, a media server, or even a workstation replacement, depending on the OS you choose to run.

The gap in connectivity between these two NAS systems reflects their broader design philosophies. Synology has deliberately kept the DS1825+ minimal, standardized, and tightly integrated with its ecosystem, which enhances long-term support and serviceability but limits flexibility. UGREEN, on the other hand, offers extensive general-purpose ports that cater to a wider range of workflows—especially for users running Windows, Proxmox, TrueNAS, or virtualized environments. Whether it’s direct media ingestion via SD card, high-speed expansion through Thunderbolt, or dual 10GbE networking, the DXP8800 Plus outpaces the DS1825+ in almost every I/O category. However, this flexibility comes with the expectation that the user is comfortable with open-platform system management and a DIY-style deployment model.

Feature Synology DS1825+ UGREEN DXP8800 Plus
LAN Ports 2x 2.5GbE RJ-45 2x 10GbE RJ-45
USB Type-A Ports 3x USB 3.2 Gen 1 (5Gbps, rear) 2x USB-A 10Gbps (rear) + 2x USB 2.0 (rear)
USB Type-C / TB4 Ports 2x USB Type-C (for DX525 expansion only) 2x Thunderbolt 4 (40Gbps, front)
Video Output None 1x HDMI (8K capable)
SD Card Reader None 1x SD 4.0
Audio Out None None
PCIe Expansion Slot 1x PCIe Gen3 x8 (x4 link) 1x PCIe x4
Front USB Access None Yes – 2x Thunderbolt 4 ports
Expansion Interface DX525 via USB-C (proprietary, not general use) Open – Thunderbolt/USB/PCIe/network based
BIOS/UEFI Access No Yes

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Software and Services

The Synology DS1825+ runs on DSM 7.2, Synology’s mature and widely respected NAS operating system. DSM offers a broad ecosystem of native applications and services, including advanced storage management, multi-tiered backup solutions, virtual machine hosting, and comprehensive multimedia support. Key built-in tools such as Synology Drive, Hyper Backup, Active Backup for Business, Surveillance Station, and Synology Photos provide enterprise-grade data handling in a highly polished interface.

DSM also includes Snapshot Replication with Btrfs, granular folder/file-level restore, and Active Directory integration. Importantly, DSM supports features like Windows ACL permissions, Samba v4, WORM file locking, and two-factor authentication by default, with Synology’s C2 platform offering cloud sync, identity management, and secure backup options. However, DSM has increasingly tied deeper functionality (e.g., certain security tools and snapshots) to Synology-branded storage and expansion hardware, with third-party drive warnings now appearing by default.

UGREEN’s DXP8800 Plus runs UGOS Pro, a Linux-based operating system developed in-house. Now one year into active deployment, UGOS Pro has matured substantially with ongoing updates and wider feature support. The interface is clean and web-accessible, and recent updates have added core NAS functions previously missing. As of the latest firmware, Docker, virtual machine creation, and Jellyfin media server are all natively supported via one-click installs.

Importantly, iSCSI support was also added, addressing a key omission for enterprise or VMware users. 2-factor authentication (2FA) is now present, and security protocols include IP/MAC-level blocking, custom firewall rules, and access control policies. While UGREEN still lacks the depth of anti-ransomware protection found in DSM or QNAP’s QuFirewall, the fundamentals have improved dramatically. Local-only AI services for photo indexing and object recognition have also been refined, with user-selectable models running without internet access.

Where DSM excels in deep integration and business-class reliability, UGOS Pro stands out for its openness and responsiveness to user feedback. Users can enable SSH, customize OS-level settings, and even install TrueNAS, UnRAID, or Proxmox without voiding the warranty, as UGREEN has opted for an open-platform approach.

UGOS also supports Windows file services (SMB), NFS, and web-based file managers, though its permissions system and UI are still somewhat basic compared to DSM. Synology’s first-party software tends to offer higher polish, more documentation, and broader cross-platform support, particularly in cloud-integrated services, whereas UGOS is catching up in functional breadth but remains relatively limited in automation and long-term software ecosystem depth.

Both platforms include mobile apps and browser-based remote access, but Synology’s remote access via QuickConnect is significantly more user-friendly and secure out-of-the-box, while UGREEN’s remote services are best replaced or supplemented by Tailscale, Cloudflare Tunnel, or similar tools. Synology’s Surveillance Station also has years of development behind it with support for hundreds of IP cameras, whereas UGREEN does not yet include native surveillance software in UGOS Pro.

For users seeking a media-focused setup, UGOS offers a good local multimedia experience via Jellyfin, while DSM supports Plex and Video Station (with transcoding limitations depending on CPU). Ultimately, Synology’s DSM remains the more robust, enterprise-ready option, while UGOS Pro presents a highly promising and increasingly competitive open alternative that still favors self-managed users.

Feature Synology DS1825+ (DSM 7.2) UGREEN DXP8800 Plus (UGOS Pro)
OS Platform DSM 7.2 (Linux-based, proprietary) UGOS Pro (Linux-based, open platform)
Virtual Machines Supported (Virtual Machine Manager) Supported (UGREEN VM app)
Docker Support Yes Yes
iSCSI Targets & LUNs Yes Yes (recently added)
Snapshot Replication Yes (Btrfs only) No native snapshot replication tool
Drive Health Monitoring Yes (S.M.A.R.T, IronWolf Health, firmware updates) Basic S.M.A.R.T + early AI features
Cloud Sync Synology C2, Google Drive, Dropbox, OneDrive, S3 WebDAV, Dropbox, OneDrive (limited)
Security Features 2FA, Secure Sign-In, WORM, Snapshot Locking, C2 Backup 2FA, IP/MAC filtering, firewall rules, limited ransomware tools
AI Photo Indexing Yes (Synology Photos, object recognition) Yes (local-only model selection, disable per feature)
Plex Media Server Yes (no hardware transcoding) Not supported natively (use Docker)
Jellyfin Media Server Installable manually or via Docker One-click install supported
Remote Access QuickConnect (Synology ID) UGOS portal + optional third-party tools
App Ecosystem Mature, hundreds of first/third-party apps Growing; core NAS features now stable
Surveillance Surveillance Station (extensive camera support) None natively included

Synology DS1825+ vs UGREEN DXP8800 PLUS NAS – Verdict and Conclusion

The Synology DS1825+ remains a compelling choice for users prioritizing reliability, software integration, and long-term support. With the proven DSM 7.2 platform, it offers enterprise-grade tools for file management, backup, virtual machines, and surveillance. Features like Snapshot Replication, C2 cloud integration, and Active Backup for Business provide peace of mind for professionals who want a turnkey experience with minimal maintenance. Although hardware specs such as the Ryzen V1500B CPU and dual 2.5GbE ports might seem modest compared to rivals, they are more than adequate for office environments, multi-user file sharing, and even light virtualization. That said, its increasing reliance on Synology-branded drives and accessories, as well as its lack of GPU support and M.2 NVMe flexibility, could be frustrating for DIY enthusiasts or media-focused users.

By contrast, the UGREEN DXP8800 Plus is a hardware-forward NAS that emphasizes performance, bandwidth, and customization. With a 12-core Intel Core i5-1235U CPU, dual 10GbE, PCIe expandability, and full-speed Gen 4 NVMe slots, it is built for workloads that demand raw power—media servers, high-speed backups, AI indexing, and even containerized apps via Docker. UGOS Pro has matured considerably over the last year, with new features like iSCSI, 2FA, VM hosting, and Jellyfin support making it much more viable than at launch. Still, while UGREEN’s open architecture and wider SSD/drive compatibility are a strength, its software ecosystem isn’t yet as refined or battle-tested as Synology’s DSM, especially for more security-sensitive or compliance-bound environments. Surveillance features and enterprise-level monitoring tools are also still missing or immature in comparison.

In short, the Synology DS1825+ is best suited for SMBs, IT administrators, or content creators who want a dependable, low-maintenance NAS with rich native features and strong vendor support, especially where third-party remote access is limited or not desired. On the other hand, the UGREEN DXP8800 Plus is ideal for prosumers, media professionals, and tech-savvy users who want maximum hardware flexibility, faster internal/external transfer speeds, and the freedom to customize their NAS at the OS level, even if that means dealing with a slightly rougher software experience. If ease of use, documentation, and long-term stability are your priorities, the DS1825+ remains a safe bet. But if you’re looking for value in performance per dollar, more openness, and higher bandwidth potential, the DXP8800 Plus offers a lot for the price.

PROS CONS PROS CONS
  • ✅ DSM 7.2 OS offers mature, stable, and feature-rich ecosystem with professional backup, replication, and VM tools.

  • ✅ ECC DDR4 Memory (8GB expandable to 32GB) ensures greater data integrity and system stability.

  • ✅ Broad software support including Surveillance Station, Active Backup, C2 Hybrid Cloud, and Hyper Backup.

  • ✅ PCIe Gen3 slot allows for 10GbE or 25GbE network expansion or M.2 cache via supported adapters.

 

  • ✅ Low noise and power efficiency (~23.8 dB, ~60W during access), making it suitable for office environments.

  • ❌ Limited M.2 NVMe support (Gen3x4, only Synology-branded SSDs officially supported).

  • ❌ No built-in GPU or transcoding support, limiting suitability for Plex or media conversion workflows.

 

  • ❌ Locks users into Synology drives/accessories, reducing flexibility and increasing costs over time.

  • ✅ High-performance Intel Core i5-1235U CPU (12-core, 10-thread) enables heavy multitasking, VMs, and AI workloads.

  • ✅ Dual 10GbE LAN ports allow for ultra-fast network throughput and multi-client simultaneous access.

  • ✅ Two M.2 NVMe Gen4x4 slots support broad range of SSDs for caching or fast storage pools.

  • ✅ 64GB DDR5 upgrade support offers excellent memory headroom for Docker, virtualization, and AI indexing.

 

  • ✅ UGOS Pro now includes Jellyfin, Docker, VMs, iSCSI, and 2FA, closing many early software gaps.

  • ❌ UGOS Pro still lacks polished UI/UX compared to DSM; some features buried or poorly documented.

  • ❌ No official Plex support and limited surveillance tools, weakening multimedia and NVR potential.

 

  • ❌ Brand trust and software maturity still lag behind market leaders like Synology or QNAP.

Check Amazon for the Synology DS1825+

$1149.99

 

Check AliExpress for the Synology DS1825+

$1149

Check Amazon for the UGREEN DXP8800 Plus

$1349.99

 

Check AliExpress for the UGREEN DXP8800 PLUS 

$1149

 

 

 

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Xyber Hydra N150 NAS Review – Better than the GMKtec G9?

Par : Rob Andrews
15 août 2025 à 18:00

Xyber Hydra NAS Review

Note – there is going to be ALOT of comparisons with the GMKtec G9 Nucbox NAS in this review. This is because the Hydra is clearly either built in partnership with GMKtec, or at least using branded components from the same factory (see example below). Likewise given this system’s similarity to the G9 and attempts to improve upon the heat criticisms of that device, it is inevitable that comparisons need to be made. If you want to learn more on it, find out more HERE and HERE .

The Xyber Hydra N150 NAS is a compact, four-bay, flash-focused network storage appliance designed for home users, small-scale media servers, and lightweight virtualization or container workloads. It is powered by the Intel Twin Lake N150 processor, a quad-core, low-power x86 CPU with a 6W TDP, making it energy-efficient while still capable of handling NAS-centric tasks like 4K media playback and multi-client file sharing. The Hydra comes equipped with 16GB of fixed LPDDR5 memory, which is soldered directly to the mainboard, offering slightly more headroom than comparable systems like the GMKtec G9, which ships with 12GB. Out of the box, it includes a 64GB eMMC module with Ubuntu OS pre-installed and ready to boot, enabling first-time users to deploy it with minimal setup. At an introductory price of $218.99, it is one of the more affordable quad-core NAS units in its category, and it even arrives with a 512GB M.2 SSD pre-installed in one of its four PCIe Gen 3×2 slots, saving buyers the immediate cost of adding their own storage.

Although visually and structurally similar to the GMKtec G9, with identical port layouts, vent positions, and internal fans — even down to the GMK-branded fans noted during inspection — the Hydra differentiates itself with a more robust passive cooling solution, a thicker, heat-dissipating metal baseplate, and wireless connectivity that supports UnRAID out of the box. These small but meaningful changes target some of the criticisms of its predecessor while maintaining the same compact form factor and low power consumption, which are critical in a shared home or office environment.

Xyber Hydra NAS Review – Quick Conclusion

The Xyber Hydra N150 NAS positions itself as a compact, affordable, and feature-complete flash-based NAS for home and small office users who prioritize a balance of cost, usability, and functionality. Compared to similarly specced models like the GMKtec G9, the Hydra delivers several notable improvements, including a thicker metal base plate that provides superior passive cooling for the M.2 SSDs and overall system stability under load. The inclusion of 16GB of fixed LPDDR5 memory — higher than many competitors in this category — combined with a preinstalled 64GB eMMC module running Ubuntu and an additional 512GB NVMe SSD in Bay 1 means the device is immediately operational out of the box, requiring no initial storage or OS setup for those who prefer simplicity. The four M.2 NVMe bays each operate at PCIe Gen3 x2, and the system’s dual 2.5GbE ports with link aggregation, HDMI outputs, and Wi-Fi 6 support add flexibility for wired and wireless deployments. During testing, the device handled sustained read and write loads respectably, although full bandwidth potential is naturally limited by the Intel N150 CPU and the available PCIe lanes, which is expected at this price point. The soldered memory and non-upgradable RAM limit future scalability, and the cooling fans require manual adjustment in the BIOS to achieve optimal thermal dissipation during intensive workloads, but neither of these compromises is unusual in this segment. Overall, at its introductory price of $218.99, the Xyber Hydra provides a solid combination of improved thermals, ready-to-use OS and storage, and efficient flash performance in a small, quiet, and energy-efficient chassis — making it a practical choice for users who want a capable NAS solution without the complexities and cost of larger, enterprise-class systems.

BUILD QUALITY - 7/10
HARDWARE - 7/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 9/10


8.0
PROS
👍🏻Improved thermal design with a thicker metal base plate for better heat dissipation compared to similar models.
👍🏻Includes 64GB eMMC storage preloaded with Ubuntu OS for out-of-the-box usability.
👍🏻Ships with a 512GB M.2 NVMe SSD in Bay 1, providing immediate usable storage.
👍🏻Fixed 16GB LPDDR5 memory — higher than comparable devices — supports more concurrent tasks.
👍🏻Wi-Fi 6 module with dual antennas, compatible with UnRAID, enabling flexible wireless deployment.
👍🏻Four M.2 NVMe bays, each supporting PCIe Gen3 x2, allowing up to 4 SSDs for flash storage arrays.
👍🏻Dual 2.5GbE ports with link aggregation support for improved network throughput.
👍🏻Compact, quiet, and energy-efficient form factor suitable for home and small office environments.
CONS
👎🏻Memory is soldered and non-upgradable, limiting future scalability.
👎🏻PCIe Gen3 x2 and CPU bandwidth constraints limit maximum aggregate performance under full load.
👎🏻Fans require BIOS adjustments for optimal thermal control during heavy sustained workloads.

Where to Buy? How Much?


Xyber Hydra NAS Review – Design and Storage

The Xyber Hydra N150 follows a minimalistic and highly compact design philosophy, measuring roughly 100mm square and slightly taller than most mini-PC NAS chassis to accommodate the four vertically-mounted M.2 SSD bays. It shares its external dimensions and general visual design with the GMKtec G9, including the placement of dual fans on the underside and venting around the periphery. However, unlike the G9, which uses a plastic bottom panel that does little to aid thermal dissipation, the Hydra replaces this with a solid, vented metal plate that doubles as a passive heat sink for the M.2 drives.

Internally, each M.2 bay is aligned with a pre-applied thermal pad that contacts directly with the thicker metal plate, promoting more even heat spread and helping to avoid the localized hot spots that were reported in earlier reviews of the G9.

The result is a chassis that retains the same small footprint and quiet operation while making better use of its passive cooling surfaces, critical in a flash-based NAS where SSD thermal throttling can become a bottleneck. The overall construction remains lightweight yet rigid, with the entire enclosure built around a metal alloy frame finished with a matte black exterior that resists fingerprints and blends well into modern home or office environments.

On the storage side, the Hydra offers four M.2 2280 NVMe slots, each rated for PCIe Gen 3×2 speeds — a slight but notable advantage over many competitors still using Gen 3×1 lanes per slot.

This configuration allows for theoretical single-drive bandwidths approaching 2GB/s, with practical performance in the range of 1.4–1.5GB/s reads and 1.1GB/s writes as observed in testing.

The system arrives preconfigured with a single 512GB NVMe SSD installed in Bay 1, providing an immediate usable pool of storage alongside the 64GB eMMC that hosts Ubuntu.

Importantly, the eMMC storage is mounted separately, leaving all four M.2 slots fully available for user expansion.

The choice of M.2 storage allows for dense, silent operation with lower power draw than traditional 3.5” or 2.5” drives, but it does limit hot-swapping and requires opening the chassis for upgrades or replacements — a trade-off typical of devices at this size and price point.

Additionally, the Hydra supports popular NAS operating systems beyond the preloaded Ubuntu, such as UnRAID and TrueNAS, which take full advantage of the NVMe-based array and facilitate different RAID configurations. One critical area of focus in the Hydra’s design is the improved thermal management compared to the G9. Temperature testing revealed clear improvements under both idle and sustained load conditions.

AS A REMINDER – THE TEMPS BELOW ARE FROM THE GMKTEC G9:

At idle, with the fans in automatic mode, the surrounding chassis temperature stabilized around 52–54°C, and the baseplate measured approximately 50–52°C after a 24-hour period of light access — respectable figures given the compact enclosure. Under heavier workloads, where all four SSDs were simultaneously subjected to repeated write tests, the baseplate peaked at 62°C with the CPU hitting full utilization. While this level of heat is not unusual for a fully-loaded NVMe NAS, the system took a long time — nearly five hours — to dissipate that heat and return to sub-50°C base temperatures when the fans remained in automatic mode. Switching to manual fan control in the BIOS and setting both fans to maximum brought the temperature down much more quickly, keeping the chassis in the mid-40°C range even under sustained load, albeit at the cost of increased noise and marginally higher power draw.

AND HERE ARE THE TEMPS OF THE XYBER HYDRA NAS FOR COMPARISON:

The improved thermal contact via the thicker metal plate and better thermal pads clearly mitigates some of the thermal throttling concerns seen in earlier systems with less effective heat spreaders.

AND HERE ARE THE TEMPS OF THE XYBER HYDRA NAS FOR COMPARISON:

Power consumption and noise measurements during testing demonstrated the efficiency of the Twin Lake platform. In an idle state with the system fully populated with four NVMe drives and minimal CPU activity (4–6% utilization), power draw stayed at a modest 15.6–15.7 watts. During full-load scenarios, including simultaneous writes to all four SSDs and 100% CPU utilization with fans at maximum, peak power consumption rose to around 26–27 watts.

These figures are reasonable for a small-form-factor NAS and illustrate the platform’s balance of performance and efficiency. Acoustic levels were similarly modest: at idle with fans on automatic, noise levels measured between 30–32 dBA, increasing to 37–38 dBA when the fans were manually set to maximum in the BIOS. This makes the system viable for use in environments where low noise is desirable, without sacrificing much in the way of cooling when needed.

Another noteworthy design element is the inclusion of a Wi-Fi 6 module with two antennas, offering wireless connectivity that is now supported by UnRAID. The wireless module sits beneath the eMMC module and is connected internally without consuming any of the four NVMe slots. This makes it possible to deploy the Hydra wirelessly, adding flexibility in environments where cabling is limited, though for maximum bandwidth the dual 2.5GbE ports remain preferable. The antennas are discreetly mounted to the rear of the chassis, maintaining the device’s clean lines and compact appearance.

The Hydra’s design prioritizes compactness, quiet operation, and efficient use of its internal volume. The choice of an all-NVMe storage configuration, preloaded OS on eMMC, and improved passive cooling all contribute to making it a more capable and thermally balanced alternative to similar NAS devices. The metal baseplate, though seemingly a small change, represents a meaningful improvement in reliability for users planning heavier sustained workloads on a budget-friendly flash NAS.

Below is a summary table of the Xyber Hydra’s tested performance metrics:

Test Scenario Result / Observation
Single SSD Read (Bay 1) 1.4–1.5 GB/s
Single SSD Write (Bay 1) ~1.1 GB/s
Dual SSD Transfer 720–730 MB/s
Quad SSD Sustained Write 900 MB/s–1 GB/s per drive (CPU-limited)
Idle Power Draw 15.6–15.7 W
Full Load Power Draw 26–27 W
Idle Noise 30–32 dBA
Full Fan Noise 37–38 dBA

Xyber Hydra NAS Review – Internal Hardware

At the heart of the Xyber Hydra N150 NAS is the Intel Twin Lake N150 processor, a 4-core, 4-thread CPU with a base TDP of 6W and burst frequency up to 3.6GHz. This is the same CPU found in the GMKtec G9, offering modest but sufficient processing power for lightweight NAS duties, such as file serving, 4K media playback, and hosting a handful of Docker containers or virtual machines. The Hydra’s choice to stick with the N150 over more power-hungry options like the N355 reflects a deliberate balance between thermals, noise, and power efficiency in such a confined chassis.

The CPU is passively cooled through the same baseplate and active fans that handle SSD thermals, and testing showed it remained below 60°C even during full-load stress tests when fans were set to automatic. When set to maximum in BIOS, the CPU temperature remained even lower, consistently in the mid-40°C range, indicating that the thermal headroom of this setup is acceptable for the N150’s intended use cases. While the CPU is not equipped with QuickSync hardware transcoding found in Intel’s higher-end processors, it did demonstrate capable software transcoding during single-stream 4K Plex playback without pushing the CPU beyond 80% utilization.

One area where the Hydra stands apart slightly from its competitors is its memory configuration. Instead of the 12GB soldered LPDDR5 memory seen in the G9, the Hydra comes pre-equipped with 16GB LPDDR5 memory, also soldered directly to the board and therefore not user-upgradable. This extra 4GB provides additional breathing room for multi-tasking, running memory-intensive services, or hosting larger numbers of containers without encountering swap usage under typical loads. The memory is clocked at 4800MHz and, as expected at this price point, is non-ECC. Given the system’s target market and workload scenarios, this is a reasonable trade-off — ECC memory would nearly double the cost of the system for relatively little gain in this context. The fixed nature of the memory remains a limitation for power users but ensures predictable thermal and power behavior that a socketed SO-DIMM might not allow in such a tightly-engineered package.

Component Specification
Processor (SoC) Intel Twin Lake N150, 4 cores / 4 threads, 3.6GHz burst, 6W TDP
Memory 16GB LPDDR5 (4800MHz, soldered, non-upgradable)
eMMC Storage 64GB onboard, preloaded with Ubuntu OS
NVMe Slots 4x M.2 2280 NVMe (PCIe 3.0 x2 per slot)
Cooling Passive aluminum baseplate with thermal pads + dual active fans
Thermals (CPU) ~45–60°C under load depending on fan settings
Hydra’s internal hardware is clearly aimed at delivering solid performance for home and small-office NAS duties while maintaining a low noise profile and power envelope. While it is not designed for demanding enterprise workloads or highly parallelized tasks, it offers a balanced set of capabilities appropriate to its price and physical footprint.

Xyber Hydra NAS Review – Ports and Connections

The Xyber Hydra N150 NAS offers a fairly comprehensive array of ports and connectivity options, matching its closest competitor, the GMKtec G9, almost identically. On the rear panel, the system is equipped with two Intel i226-V 2.5GbE RJ45 ports, which support link aggregation and failover. These provide a theoretical combined throughput of up to 550–580 MB/s when paired with appropriately configured switches.

While some users may be disappointed by the absence of 10GbE, this is an understandable compromise given the limitations of the N150 CPU’s PCIe lane budget and the heat constraints of such a compact design. As noted during testing, users can reclaim one of the M.2 slots to install a PCIe-to-10GbE adapter, though this does come at the cost of one storage bay.

Where to Buy?

The networking implementation also includes support for wake-on-LAN (WoL) and PXE boot functionality, adding flexibility for remote management and deployment scenarios. The system also integrates an M.2 Wi-Fi 6 module with dual antenna outputs. This enables wireless network support, now even compatible with UnRAID as of recent updates, and can serve as either a primary or fallback network connection in environments where cabling is not practical.

In terms of USB connectivity, the Hydra provides a total of four ports: three USB 3.2 Gen 2 Type-A ports located on the rear panel, and one USB-C port that is also used for power delivery. The three USB-A ports deliver up to 10Gbps each, which is sufficient for attaching external backup drives, additional storage enclosures, or other peripherals such as a UPS monitoring interface. The USB-C power connector is fed by an external wall-mounted 48W integrated external power brick, which means users cannot simply swap in any generic USB-C charger — it is a dedicated high-wattage supply.

This design choice ensures sufficient and stable power delivery to all internal components even under peak load, but it does limit flexibility somewhat compared to true USB-PD-compatible implementations. Users looking to attach keyboards, mice, or other USB peripherals directly to the system will find that the port count is adequate, though not expansive.

For video output, the Hydra offers two HDMI 2.0 ports, supporting up to 4K resolution at 60Hz. These are useful for initial OS installation or configuration, as well as for users who intend to repurpose the NAS as a hybrid media player or thin client. During testing, the HDMI output worked without issue on both the preinstalled Ubuntu OS and when booting into alternative operating systems. While video output is rarely essential for a headless NAS, its inclusion enhances usability, especially for less experienced users or those deploying the system in multi-role environments. Combined with the USB ports and network interfaces, the Hydra provides a balanced set of I/O suitable for its intended use cases, with enough bandwidth to fully utilize its internal storage under typical workloads.

Below is a summary table of the ports and connections on the Xyber Hydra:

Port / Interface Specification
Ethernet 2x 2.5GbE RJ45 (Intel i226-V, link aggregation)
Wi-Fi Wi-Fi 6 (via M.2 module, dual antennas included)
USB-A Ports 3x USB 3.2 Gen 2 (10Gbps)
USB-C Power Input 1x USB-C (requires bundled 65W power adapter)
HDMI Outputs 2x HDMI 2.0 (4K @ 60Hz)
Wake-on-LAN Supported
PXE Boot Supported
These connectivity options place the Hydra firmly within the expectations of modern small form-factor NAS systems, providing a well-rounded mix of wired, wireless, and peripheral interfaces without overcommitting resources or space.

Xyber Hydra NAS Review – Conclusion and Verdict

The Xyber Hydra N150 NAS represents a deliberate and measured evolution of the budget-friendly compact NAS formula, clearly designed to resolve key weaknesses of similar products like the GMKTec G9 without altering the fundamental architecture. Its use of a thicker, thermally conductive metal base plate provides demonstrable improvement in heat dissipation compared to the plastic underside of the G9, a difference borne out in extended load testing where temperatures stabilized more quickly and stayed lower when fan profiles were adjusted. The pre-installed 64GB eMMC module running Ubuntu out of the box eliminates the initial configuration barrier often faced by novice users, while still allowing more experienced users to easily replace it with their OS of choice, such as ZimaOS or TrueNAS. The inclusion of a 512GB NVMe SSD in the primary M.2 bay adds immediate storage capacity without requiring an upfront investment in additional drives, an uncommon but practical feature at this price point.

Internally, the decision to provide 16GB of fixed LPDDR5 memory — 4GB more than its nearest comparable competitor — gives the Hydra slightly more headroom for memory-intensive tasks, such as running lightweight container workloads or maintaining a larger metadata cache for media streaming applications. While the memory remains non-upgradable, the choice of capacity is a reasonable compromise given the constraints of the Intel N150 platform and the system’s focus on cost efficiency. The integrated Wi-Fi 6 module, with dual antennas and full UnRAID compatibility, is another meaningful addition, enabling wireless deployments where cabling is impractical and expanding the deployment scenarios for home and small office users. These subtle but important upgrades make the Hydra feel more complete out of the box, catering to a broader range of use cases with fewer compromises.

That said, the Hydra still shares many of the inherent trade-offs of its class. The N150 processor is adequate for modest workloads, but becomes saturated under sustained high parallel usage, especially when all four M.2 slots are simultaneously active and the CPU nears 100% utilization. The PCIe lane limitations of the platform, with each M.2 slot limited to Gen3 x2 speeds, restrict the aggregate performance potential of RAID arrays or concurrent high-bandwidth operations. Similarly, the continued reliance on dual 2.5GbE ports limits maximum external throughput despite the internal SSD bandwidth being capable of more, and although M.2-to-10GbE adapters remain an option, they come at the cost of sacrificing one storage slot. BIOS-level adjustments are also required to extract the best thermal and fan performance under heavy use, something that more advanced users will appreciate but could frustrate beginners.

Overall, at its introductory price of $218.99, the Xyber Hydra N150 achieves a strong balance of value, practicality, and refinement in the entry-level NAS segment. The thoughtful inclusion of extras — the 64GB bootable eMMC, 512GB SSD, improved cooling, and additional memory — make it feel more turnkey than competing models, while still leaving room for advanced customization. It’s a sensible option for users seeking a compact and efficient NAS for personal cloud storage, light virtualization, or as a dedicated media server, provided expectations around CPU and networking throughput are kept realistic. For its target audience, the Hydra is a compelling and notably improved choice that addresses many of the criticisms of earlier designs without abandoning the affordability that defines this class of devices.

Where to Buy? How Much?
PROs of the Xyber Hydra NAS CONs of the Xyber Hydra NAS
  • Improved thermal design with a thicker metal base plate for better heat dissipation compared to similar models.

  • Includes 64GB eMMC storage preloaded with Ubuntu OS for out-of-the-box usability.

  • Ships with a 512GB M.2 NVMe SSD in Bay 1, providing immediate usable storage.

  • Fixed 16GB LPDDR5 memory — higher than comparable devices — supports more concurrent tasks.

  • Wi-Fi 6 module with dual antennas, compatible with UnRAID, enabling flexible wireless deployment.

  • Four M.2 NVMe bays, each supporting PCIe Gen3 x2, allowing up to 4 SSDs for flash storage arrays.

  • Dual 2.5GbE ports with link aggregation support for improved network throughput.

  • Compact, quiet, and energy-efficient form factor suitable for home and small office environments.

  • Memory is soldered and non-upgradable, limiting future scalability.

  • PCIe Gen3 x2 and CPU bandwidth constraints limit maximum aggregate performance under full load.

  • Fans require BIOS adjustments for optimal thermal control during heavy sustained workloads.

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Terramaster F4 SSD NAS Review

Par : Rob Andrews
11 août 2025 à 18:00

Should You Buy the Terramaster F4 SSD NAS?

The TerraMaster F4 SSD is a 4-bay all-flash NAS aimed at home and prosumer users who want compact, quiet, and high-speed network storage based on SSD technology. Priced at $399, it represents the third entry in TerraMaster’s SSD-focused lineup, positioned below the larger 8-bay F8 SSD and the i5-powered F8 SSD Plus. This model is designed to deliver a balance between affordability and performance, featuring the Intel N95 quad-core processor, 8GB of DDR5 memory (upgradeable to 32GB), and four M.2 NVMe SSD slots across mixed-speed PCIe lanes. While its architecture targets lower power consumption and silent operation (rated at 19 dB in standby), it also integrates a 5GbE network port, USB 3.2 connectivity, and a toolless design to ease deployment. Designed for both turnkey usage with TerraMaster’s TOS 6 OS or as a flexible bare-metal option for TrueNAS or UnRAID, the F4 SSD sits at a crossroads between convenience and configurability—providing users with both preconfigured software and open-ended potential for third-party operating systems.

Terramaster F4 SSD NAS Review – Quick Conclusion

The TerraMaster F4 SSD delivers a compelling package for users seeking an affordable, compact, and all-flash NAS solution with a strong blend of performance and usability. Its toolless, space-saving design makes installation easy, while the inclusion of four M.2 NVMe slots—two at PCIe 3.0 x2 and two at x1—offers fast storage potential, albeit with some asymmetry that could affect RAID performance in certain configurations. Powered by the efficient Intel N95 CPU and 8GB of DDR5 memory, the system supports multimedia streaming, Docker containers, virtual machines, and AI-powered photo indexing, all handled by the continually improving TOS 6 operating system. Key strengths include the 5GbE networking for faster data access, support for mixed-capacity SSDs via TRAID, and very low noise and power consumption, making it ideal for home environments. However, limitations such as the single network port with no redundancy, lack of ECC memory support, and the presence of mixed-speed NVMe slots may be off-putting to power users or small businesses seeking higher resilience and uniform throughput. Still, at $399, the F4 SSD offers a well-rounded balance of speed, features, and ease of use for home users, prosumers, and content creators who want SSD-level performance without the complexity or cost of higher-end systems.

SOFTWARE - 7/10
HARDWARE - 8/10
PERFORMANCE - 7/10
PRICE - 9/10
VALUE - 9/10


8.0
PROS
👍🏻Compact, toolless chassis with easy-access thumb screw and SSD installation
👍🏻All-flash NVMe architecture with support for four M.2 2280 SSDs
👍🏻5GbE network port enables high-speed local and remote transfers
👍🏻TRAID and TRAID+ allow mixed-capacity SSDs and seamless storage expansion
👍🏻TOS 6 OS includes Plex, Jellyfin, Docker, VM support, and AI photo indexing
👍🏻Quiet operation (19 dB) and low power usage (32W under load)
👍🏻Priced competitively at $399 for a turnkey SSD NAS
CONS
👎🏻Single 5GbE port with no failover or link aggregation
👎🏻Two of the four SSD slots are limited to PCIe Gen3 x1, creating potential RAID bottlenecks
👎🏻Non-ECC DDR5 memory may not meet strict data integrity requirements


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

Terramaster F4 SSD NAS

Amazon in Your Region for the Terramaster F4 SSD NAS @ $399

B&H for the Terramaster F4 SSD NAS @ $399.99

 

Terramaster F4 SSD NAS Review – Design and Storage

The TerraMaster F4 SSD adopts a compact, minimalist design that is clearly optimized for silent, flash-only operation. Measuring just 138mm x 60mm x 140mm and weighing 0.6 kg, it is one of the smallest 4-bay NAS chassis on the market, aided by its exclusive use of M.2 NVMe SSDs instead of traditional 3.5-inch hard drives. This all-flash design allows the chassis to maintain a reduced footprint while still offering significant internal capacity—up to 32TB using four 8TB drives. The unit features a clean, industrial aesthetic with smooth surfaces and subtle branding, aligning with TerraMaster’s recent design choices in their SSD NAS series. Importantly, the internal layout supports top-to-bottom convection airflow, with side ventilation and smart fan controls designed to balance cooling and acoustics.

Installation is clearly a design priority here. The F4 SSD uses a toolless construction held together by a single thumbscrew, allowing the user to remove the outer casing in seconds. Internally, SSDs are inserted via a pull-out drawer mechanism with dedicated mounting trays, and there’s ample clearance around each M.2 slot for installing large passive heatsinks.

Notably, the SSD slots are laid out in such a way that their orientation lines up directly with the two 50mm rear fans. These fans are positioned to channel airflow across both the SSDs and the large passive heatsink mounted over the Intel N95 CPU, ensuring that even under sustained workloads the thermals remain controlled without relying on noisy active cooling systems.

The internal storage configuration is somewhat mixed in terms of interface speed. Of the four M.2 slots, two operate over PCIe 3.0 x2 lanes, and two are limited to PCIe 3.0 x1. This introduces a disparity in potential transfer speeds—approximately 1.6GB/s per drive for the faster pair, and around 700-900MB/s for the slower ones.

While this approach is a practical trade-off due to CPU lane limitations, it may pose bottlenecks in RAID scenarios where all four drives are used in a single pool. However, for users willing to configure their SSDs into two independent volumes, or who rely on TerraMaster’s TRAID system with mixed-capacity drives, the system can still make efficient use of available bandwidth.

The F4 SSD supports a range of RAID configurations including TRAID, TRAID+, RAID 0, 1, 5, 6, and 10, as well as JBOD and single-drive modes. TRAID, TerraMaster’s hybrid RAID system, is especially notable here as it supports storage expansion using drives of different sizes—an advantage for users who plan to incrementally upgrade their SSDs over time. This flexibility is rare in entry-level NAS units, and helps avoid the traditional pitfalls of having to replace all drives at once in standard RAID arrays. The software layer automatically calculates parity and adjusts volume size without requiring complete data migration or reconfiguration.

From a practical perspective, the move to SSD-only architecture enables faster access times, reduced power usage, and significantly lower noise. TerraMaster reports a typical power draw of just 32W under full load with four SSDs, around 11-13W with all 4 SSD in a ‘read state’ with the CPU at sub 5%, and only 8W in complete hibernation. The fan noise sits below 19dB during idle operation, placing it among the quietest NAS units available. For environments such as living rooms or bedrooms where noise sensitivity is key, this silent thermal design makes the F4 SSD particularly well-suited for home multimedia centers and always-on photo backup servers.

Terramaster F4 SSD NAS Review – Internal Hardware

At the heart of the TerraMaster F4 SSD is the Intel N95 processor, a quad-core, four-thread CPU based on the Alder Lake-N architecture. Clocked at a base frequency of 1.7GHz with a boost up to 3.4GHz, it offers efficient processing power with a low 15W TDP, which contributes to the unit’s low thermal output and power consumption. While not designed for heavy computational workloads, the N95 supports Intel Quick Sync for hardware-accelerated video transcoding and includes integrated UHD graphics capable of handling 4K@60Hz decoding.

This makes the F4 SSD suitable for multimedia servers like Plex or Jellyfin, which are supported out of the box by TerraMaster’s TOS operating system. The CPU also provides nine PCIe Gen3 lanes for connecting NVMe drives, network interfaces, and USB ports—something that TerraMaster appears to have carefully balanced across components.

The system is equipped with 8GB of DDR5 memory pre-installed in a single SODIMM slot, with support for up to 32GB. The memory is non-ECC, which is expected for this price bracket and CPU class, though some users may view this as a drawback in data-critical environments. DDR5 support is a notable inclusion, offering higher bandwidth and lower power consumption than DDR4.

Because there is only a single memory slot, upgrades require replacing the pre-installed module entirely, but access is straightforward thanks to the removable chassis design. Combined with the N95 CPU and SSD storage, the memory allows for lightweight virtualization, Docker container deployment, and simultaneous access by multiple users—within the limitations of the CPU’s architecture.

Internally, the F4 SSD supports four M.2 2280 NVMe drives: two connected via PCIe 3.0 x2, and two via PCIe 3.0 x1. This setup is a direct consequence of the limited PCIe lane count on the N95 CPU, and reflects a compromise between cost and performance. While this layout means that users may encounter performance bottlenecks if building a single RAID array across all four slots, TerraMaster’s OS allows for flexible configuration, including the creation of separate volumes. The system also includes a substantial heatsink on the CPU and aligns airflow directly over both the CPU and storage bays. Together, these components form a power-efficient, quiet, and competent NAS platform optimized for SSD workloads.

Component Specification
CPU Model Intel N95 (4C/4T, up to 3.4 GHz, 15W TDP)
CPU Architecture Intel Alder Lake-N, x86 64-bit
Integrated Graphics Intel UHD, 1.2 GHz, 4K@60Hz support
Memory Type DDR5 SODIMM (Non-ECC)
Pre-installed Memory 8GB DDR5 (1x8GB)
Maximum Memory Supported 32GB DDR5
Memory Slots 1 x DDR5 SODIMM
Internal Storage Slots 4 x M.2 2280 NVMe SSD (2 x PCIe 3.0 x2, 2 x x1)
RAID Support TRAID, TRAID+, RAID 0/1/5/6/10, JBOD, Single
Cooling 2 x 50mm fans + large passive CPU heatsink
Power Consumption 32W (read/write), 8W (hibernation with SSDs)
Noise Level 19 dB(A) in standby

Terramaster F4 SSD NAS Review – Ports and Connections

The TerraMaster F4 SSD is equipped with a practical selection of ports that reflect its mid-tier positioning. The standout feature is a single RJ-45 5GbE Ethernet port, offering five times the bandwidth of standard Gigabit connections and double that of 2.5GbE. This enables significantly faster file transfers when paired with compatible switches or direct-to-PC connections, making it a viable solution for photo and video editing over the network. However, the inclusion of only one network port—without redundancy or support for link aggregation—limits failover options and prevents more advanced networking setups, a drawback that may be felt in business or multi-user deployments. Users seeking dual LAN ports for redundancy or trunking will need to resort to USB-to-Ethernet adapters, which are supported via the system’s high-speed USB 3.2 ports.

In addition to its network interface, the F4 SSD features three USB 3.2 Gen 2 ports rated at 10Gbps each—two Type-A and one Type-C. These ports support a variety of functions, including attaching external storage for backups, connecting USB-based 2.5GbE/5GbE adapters, or even interfacing with uninterruptible power supplies (UPS). This level of connectivity is somewhat uncommon in compact SSD NAS systems and adds useful flexibility, particularly for users operating the unit as a personal cloud or remote access point. Notably absent, however, are legacy USB 2.0 ports or additional network expansion slots (such as PCIe or SFP+), which would have extended the F4 SSD’s upgradeability for more advanced users.

On the display side, the NAS includes a single HDMI 2.0b port, allowing for direct output of its graphical interface or multimedia playback, though this feature is seldom used in headless NAS operation. Still, its presence supports limited desktop use cases or direct-attached displays for VM consoles and Docker GUIs. Internally, the Intel N95 CPU provides up to three display outputs, but only one is exposed in this system. The absence of a VGA port, PCIe expansion slots, or front-facing ports keeps the design clean but does reduce options for advanced customization. Ultimately, the F4 SSD provides just enough I/O for mainstream home or small office use, while intentionally leaving out more enterprise-grade connectivity.

Port Type Quantity / Specification
RJ-45 Network Port 1 x 5GbE (5 Gigabit Ethernet)
USB 3.2 Gen 2 (10Gbps) 3 total: 2 x Type-A, 1 x Type-C
HDMI Output 1 x HDMI 2.0b
PCIe Slots None
SFP+ 10GbE Port None
VGA Port None
Audio Jack / COM Ports None
USB 2.0 Ports None
Networking Features TNAS.online, DDNS, VPN Server/Client, Link Aggregation (limited)

Terramaster F4 SSD NAS Review – TOS Software and Services

The TerraMaster F4 SSD ships with TOS 6, the company’s latest revision of its NAS operating system. TOS 6 has matured significantly compared to earlier versions, now offering a more stable and responsive interface with support for modern NAS functionality. The OS features a multi-window desktop-like environment accessible via browser, along with mobile and desktop clients for streamlined access.

The interface, though less polished than Synology’s DSM, has seen improvements in usability, with clearer organization of applications, settings, and user tools. Key system features include centralized backup, file indexing, user/group controls, and integrated snapshot functionality for shared folders and iSCSI volumes. For home users and prosumers, these updates represent a notable step forward, especially when paired with the low latency benefits of SSD storage.

Among TOS 6’s more prominent features is TRAID (TerraMaster RAID), a hybrid RAID system designed to offer flexible storage expansion and mixed-capacity drive support. Similar in principle to Synology’s SHR, TRAID allows users to start with a small number of SSDs and expand later with larger ones without reconfiguring the entire array.

This flexibility is especially useful in all-flash systems where high-capacity SSDs can be cost-prohibitive to install all at once. In addition to TRAID and TRAID+, the system also supports traditional RAID levels (0, 1, 5, 6, 10), JBOD, and single-drive configurations. Volume expansion, RAID migration, SSD TRIM, and S.M.A.R.T. monitoring are supported natively, along with scheduled snapshots and USB-based backups.

TOS 6 includes a growing suite of first- and third-party applications that address multimedia, surveillance, and cloud connectivity. The F4 SSD supports Plex Media Server, Jellyfin, Emby, and TerraMaster’s own Multimedia Server for DLNA/UPnP streaming. Users can also deploy Docker containers, virtual machines, and network services such as iSCSI, FTP, WebDAV, and VPN servers.

Multimedia support is further bolstered by hardware-accelerated 4K video decoding via the Intel UHD iGPU, making the NAS suitable as a home media hub. AI photo indexing is also integrated into Terra Photos, allowing automated categorization of people, pets, and scenes. For mobile users, the TNAS app offers automatic photo/video uploads and remote file access, enhancing backup automation and content management.

Enterprise and security features are present but modest. TOS 6 includes AES-encrypted folders, SSL certificate import, two-factor authentication, and alerting via email or desktop notifications. Integration with AD domains and LDAP clients is supported, but ECC memory is not, reflecting the system’s home and small-office focus. Additional cloud integration is provided via CloudSync, which supports Google Drive, OneDrive, Amazon S3, Dropbox, Baidu, and Alibaba Cloud.

For users requiring simple hybrid-cloud backups or syncing across multiple platforms, this unified interface is functional and sufficient. While TOS lacks the enterprise depth of some competing NAS platforms, its overall range of applications and services is now competitive for most home or light professional needs.

Category Feature Support
Operating System TOS 6 (Web-based + Mobile + PC Clients)
RAID Support TRAID, TRAID+, RAID 0/1/5/6/10, JBOD, Single
Snapshots Shared folder and iSCSI LUN snapshots
Multimedia Support Plex, Jellyfin, Emby, DLNA, Terra Multimedia Server
AI Features AI Photo Indexing, Face/Object Recognition
Backup Tools Duple Backup, Centralized Backup, USB Backup
Virtualization Docker, Virtual Machine Manager
Security AES folder encryption, SSL, 2FA, firewall, alerts
User Management 128 users, ACL, quotas, domain & LDAP integration
Cloud Integration Google Drive, OneDrive, Dropbox, Amazon S3, etc.
Networking Services VPN, DDNS, TNAS.online, NFS, SMB, FTP, WebDAV
Access Tools TNAS Mobile, TNAS PC, Remote Browser Access

Terramaster F4 SSD NAS Review – Verdict and Conclusion

The TerraMaster F4 SSD presents itself as a well-considered entry into the compact, all-flash NAS segment, balancing low noise, energy efficiency, and competitive performance at a sub-$400 price point. With its fanless NVMe-based design, Intel N95 quad-core processor, and DDR5 memory, it meets the essential needs of home and small office users looking for a reliable and responsive storage solution. The inclusion of TerraMaster’s increasingly capable TOS 6 operating system, featuring AI-driven photo management, centralized backup, and Docker/VM support, makes it more than just a network storage device—it becomes a lightweight but versatile data center for the home. Its TRAID support allows for mixed SSD deployments with easy expansion, which is particularly attractive to users upgrading gradually or working within budget constraints. The thoughtful internal layout and cooling also ensure performance remains consistent even under sustained load, without sacrificing the near-silent operation.

However, the F4 SSD is not without caveats. The use of a single 5GbE port, without redundancy or aggregation, may deter users requiring network failover or higher throughput for simultaneous operations. Additionally, although the PCIe lane allocation strategy maximizes the N95’s limited bandwidth, the asymmetry between Gen3 x2 and x1 slots could bottleneck RAID performance depending on how volumes are configured. When compared to the larger F8 SSD or DIY options with dual 10GbE or ECC support, the F4 SSD may feel limiting to power users or business environments with stricter reliability requirements. That said, for the vast majority of home users, content creators, and prosumers looking for an all-in-one, high-speed NAS that blends well into living spaces, the F4 SSD delivers a solid and accessible solution. Its price-to-performance ratio, combined with the simplicity of deployment and maturing software ecosystem, makes it a compelling option in the growing market of SSD NAS devices.

Terramaster F4 SSD NAS

Amazon in Your Region for the Terramaster F4 SSD NAS @ $399

B&H for the Terramaster F4 SSD NAS @ $399.99

 

PROs of the Terramaster F4 SSD CONs of the Terramaster F4 SSD
  • Compact, toolless chassis with easy-access thumb screw and SSD installation

  • All-flash NVMe architecture with support for four M.2 2280 SSDs

  • 5GbE network port enables high-speed local and remote transfers

  • TRAID and TRAID+ allow mixed-capacity SSDs and seamless storage expansion

  • TOS 6 OS includes Plex, Jellyfin, Docker, VM support, and AI photo indexing

  • Quiet operation (19 dB) and low power usage (32W under load)

  • Priced competitively at $399 for a turnkey SSD NAS

  • Single 5GbE port with no failover or link aggregation

  • Two of the four SSD slots are limited to PCIe Gen3 x1, creating potential RAID bottlenecks

  • Non-ECC DDR5 memory may not meet strict data integrity requirements

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 
❌
❌