Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

Zimaboard 2 Review

Par : Rob Andrews
16 mai 2025 à 18:00

The Zimaboard 2 Single Board Server Review – The Best Yet?

In an increasingly saturated market of single-board computers and compact servers, the ZimaBoard 2 arrives with a clear goal: to offer an affordable, x86-powered, DIY-friendly alternative that bridges the gap between embedded systems and full-blown home servers. Developed by IceWhale, a brand that has already seen crowdfunding success with products like the original ZimaBoard, ZimaBlade, and ZimaCube, the ZimaBoard 2 aims to refine the company’s mission of delivering low-power, highly customizable devices for tinkerers, creators, and homelab enthusiasts. At its core, the ZimaBoard 2 is designed for users who want flexibility without complexity—whether that’s spinning up a lightweight virtualization platform, building a smart home hub, deploying a personal cloud, or running a local media server with minimal noise and energy consumption.

Unlike consumer-grade NAS systems or ARM-based boards, ZimaBoard 2 taps into the x86 ecosystem, offering broader OS compatibility and performance benefits while maintaining a compact, passively cooled footprint. This review explores the hardware, thermal and network performance, and software environment of the ZimaBoard 2, evaluating where it fits in the broader landscape of edge computing and personal infrastructure. As with previous IceWhale launches, this unit is being released initially through crowdfunding—a factor that calls for cautious optimism. Still, with a track record of fulfilling past campaigns, IceWhale appears confident in ZimaBoard 2’s readiness. Whether that confidence is justified, and whether the board truly earns its place in a crowded DIY server landscape, is what we’ll determine over the course of this review.

Zimaboard 2 Review – Quick Conclusion

The ZimaBoard 2 is a compact, x86-based single board server that strikes a balance between flexibility, efficiency, and affordability. It offers solid performance for its size, thanks to an Intel N150 processor, dual 2.5GbE ports, and a PCIe 3.0 x4 slot for meaningful expansion, making it suitable for tasks like media serving, light virtualization, and home automation. However, limitations such as non-upgradable 8GB RAM, slow onboard eMMC storage, and reliance on passive cooling require careful consideration for more demanding workloads. ZimaOS provides a user-friendly starting point with Docker support and basic file management, though advanced users may prefer to install alternative operating systems. Overall, the ZimaBoard 2 is a capable and well-engineered device for DIY server enthusiasts who understand its constraints and plan their use case accordingly

BUILD QUALITY - 10/10
HARDWARE - 8/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 10/10


9.0
PROS
👍🏻x86 Architecture – Compatible with a wide range of operating systems including ZimaOS, Unraid, TrueNAS SCALE, and Proxmox.
👍🏻Dual 2.5GbE LAN Ports – Offers strong networking capabilities for multi-service workloads and gateway setups.
👍🏻PCIe 3.0 x4 Slot – Enables high-speed expansion for 10GbE NICs, NVMe storage, or combo cards.
👍🏻Fanless, Silent Operation – Completely passively cooled, ideal for home or quiet office environments.
👍🏻Compact and Durable Build – Small footprint with an all-metal chassis that doubles as a heatsink.
👍🏻ZimaOS Included – User-friendly OS with a Docker-based App Store and basic VM tools, ready out of the box.
👍🏻Flexible Storage Options – Dual SATA ports plus USB 3.1 support for connecting SSDs, HDDs, or external drives.
👍🏻Low Power Consumption – Efficient 6W CPU with ~10W idle and ~40W max under heavy load scenarios.
CONS
👎🏻Non-Upgradable RAM – 8GB of soldered LPDDR5x limits long-term scalability for memory-intensive tasks.
👎🏻Slow/Small Default Internal Storage – 32GB eMMC is convenient but underperforms for OS-level responsiveness or high I/O workloads.
👎🏻Thermal Headroom is Limited – Passive cooling alone may not be sufficient in closed environments or under sustained load without added airflow.
👎🏻Not Launching on Traditional Retail, but instead on Crowdfunding.

NOTE – You can visit the Zimaboard 2 Crowdfunding Page (live from 10:30AM ET 22nd April 2025) by clicking the banner below. The entry price for early backers is $169, but that will revert to $179 (and $239 for a scaled-up storage and memory version). I DO NOT receive any kind of affiliate commission or sponsorship for this review (and this review, like all reviews at NASCompares, was done without the brand in question’s interference or input). You can use the link HERE to see the campaign for yourself and/or click the banner below:

Zimaboard 2 Review – Design and Hardware

The physical build of the ZimaBoard 2 continues IceWhale’s trend of delivering thoughtfully designed hardware. The full aluminum enclosure gives the board a sturdy, premium feel, while also serving as its main cooling surface. Every port is clearly labeled, and the board layout is practical and accessible.

Component Details
Processor Intel® N150 (4 cores, 6MB cache, up to 3.6GHz)
Memory 8GB LPDDR5x @ 4800MHz (soldered, non-upgradable)
Internal Storage 32GB eMMC (soldered)
LAN 2 x 2.5GbE Ethernet ports (Intel chipset)
Storage Interfaces 2 x SATA 3.0 (6Gb/s) with power
USB Ports 2 x USB 3.1
Display Output 1 x Mini DisplayPort 1.2 (up to 4K @ 60Hz)
PCIe Expansion 1 x PCIe 3.0 x4
Cooling Passive cooling (full metal heatsink enclosure)
Graphics Features Integrated graphics (up to 1GHz), Intel® Quick Sync Video
Virtualization Support Intel VT-x, VT-d, AES-NI
Power Supply 12V / 3A DC input
TDP 6W
Dimensions 140mm x 81.4mm x 31mm

The PCIe slot includes a pre-cut section to accommodate longer cards, allowing for flexibility even in this small form factor. IceWhale also includes eco-friendly packaging, a detail that reflects both brand identity and attention to user experience. A cardboard insert allows users to hold the board upright alongside drives, useful for initial setup before a case is selected.

Optional accessories like a SATA adapter board with combined data/power connectors and third-party-compatible drive cages help complete the DIY experience. However, there are some practical limitations to consider: the soldered RAM means users must carefully plan for memory demands, and the internal storage, while functional, will not satisfy users looking for fast OS performance.

At the core of the ZimaBoard 2 is the Intel N150 processor, part of Intel’s Twin Lake architecture, offering four cores with a base clock that boosts up to 3.6GHz. This chip represents a significant step forward compared to the Celeron N3450 used in the original ZimaBoard, delivering better single-thread and multi-thread performance while maintaining a low 6W TDP.

Complementing the CPU is 8GB of LPDDR5x memory clocked at 4800MHz. While the use of fast memory is a welcome improvement, the limitation lies in its soldered nature—users cannot expand beyond this capacity.

This decision may be acceptable for light workloads such as running a Plex server, Docker containers, or Home Assistant, but it could become a bottleneck for users planning to run multiple VMs or resource-heavy services. The N150 CPU does support hardware virtualization and Intel AES-NI, which is essential for tasks like encrypted storage or virtual machine deployment.

In testing scenarios, the CPU delivered solid performance across typical tasks, and managed to keep up during multi-tasked environments with multiple services active. However, users with ambitions for more demanding applications will need to balance those expectations against the non-upgradable memory ceiling.

ZimaBoard 2 comes with 32GB of onboard eMMC storage, a choice that is both practical and limiting. This eMMC module is soldered to the board and is intended to house ZimaOS out of the box, giving users a ready-to-use system upon first boot. While this inclusion lowers the barrier to entry and simplifies setup for beginners, it presents performance limitations and a lack of flexibility. In testing, write speeds hovered around 35MB/s during mixed I/O operations, which is noticeably slow for tasks that involve frequent read/write cycles.

Moreover, should a user opt to install a different OS—such as TrueNAS SCALE, Proxmox, or Unraid—they would either overwrite the bundled ZimaOS or need to boot from an external USB or PCIe-based drive. Since the internal storage is neither M.2 nor socketed, it lacks the speed and modularity enthusiasts often seek in modern setups. As a result, users planning to use ZimaBoard 2 as a primary virtualization or storage server are better off supplementing it with faster storage via USB 3.1, SATA, or the PCIe slot for booting alternative OS environments. This caveat underscores a recurring theme with ZimaBoard 2: it’s well-positioned for entry-level use but requires external upgrades for more ambitious workflows.

One of the ZimaBoard 2’s most compelling features is its inclusion of two SATA 3.0 ports alongside a full PCIe 3.0 x4 slot. This greatly expands the device’s potential beyond typical SBCs, offering users a reliable way to build custom NAS setups, integrate high-speed NVMe storage, or even install networking and accelerator cards. During testing, a Synology combo card featuring two M.2 NVMe slots and a 10GbE Ethernet port was installed in the PCIe slot. The board successfully recognized all interfaces, demonstrating full PCIe compatibility and allowing throughput measurements to confirm the system could push high-bandwidth traffic.

With up to 4GB/s of bandwidth over PCIe, users can install expansion cards for fast storage, additional networking, or even compute offloading—although the small form factor means thermal and power considerations become important quickly. The SATA ports, while standard in speed, proved perfectly functional for connecting 2.5″ SSDs or traditional HDDs. IceWhale’s own accessories, like SATA power adapters and drive cages, help streamline this process, though third-party solutions work just as well.

For users aiming to transform this board into a flexible micro-server, this PCIe slot is a gateway to many possibilities and a key reason ZimaBoard 2 stands out in its category.

In terms of networking, the ZimaBoard 2 comes equipped with two 2.5GbE Ethernet ports, both powered by Intel chipsets—a choice that emphasizes reliability and driver compatibility across various operating systems. These ports are more than just a checkbox feature; they performed reliably under load and achieved full link saturation during file transfer tests and when used in conjunction with PCIe expansion.

In more advanced setups, users can configure bonding or load balancing to maximize throughput or redundancy. Additionally, there are two USB 3.1 ports for attaching external drives, peripherals, or USB-bootable OS images.

The inclusion of a Mini DisplayPort 1.2 allows for 4K video output at 60Hz, which is useful for users who want to use the board as a lightweight desktop or for initial OS installation and diagnostics—though it does require an adapter to convert to standard HDMI. Notably absent is built-in Wi-Fi or Bluetooth, which aligns with its target audience of wired-first home labs and embedded installations. Overall, ZimaBoard 2 offers a well-rounded set of connectivity options that exceed expectations for its size, with the dual 2.5GbE ports making it particularly attractive for networking-focused use cases like firewalls, proxies, or containerized gateways.

Thermal management on the ZimaBoard 2 is entirely passive, with the aluminum enclosure doubling as a heatsink to dissipate heat away from the CPU and other key components. This fanless approach results in completely silent operation, which is ideal for home or office environments where noise is a concern.

However, the trade-off is that the board’s temperature will steadily rise over time, especially in enclosed cases or cabinets with poor airflow. During idle operation, with minimal system load and attached drives in standby, temperatures hovered around 50°C after an hour, increasing slightly to 52–54°C over a 24-hour window.

Under heavier usage—including Plex playback, VM activity, active networking, and full PCIe slot utilization—the system remained thermally stable but showed significant heat buildup. Power consumption in these high-usage scenarios peaked at approximately 39–40W, which is quite efficient given the workload.

Still, users planning to run the board continuously under load are strongly encouraged to introduce active airflow or leave the system in a well-ventilated space. The all-metal build is a clever and minimalist solution, but it has practical limitations that users need to plan for—especially if operating in warmer environments or planning to enclose the unit in a tight chassis.

When put through real-world workloads, the ZimaBoard 2 delivered performance that largely aligned with its specs and design goals. File transfers over the onboard 2.5GbE interfaces reached full saturation in controlled conditions, proving the CPU and I/O subsystems are capable of pushing maximum throughput without significant bottlenecks. PCIe expansion further unlocked performance potential—especially with the Synology combo card, where simultaneous NVMe and 10GbE performance were tested. While NVMe read speeds reached up to 1.6GB/s, write speeds hovered around 500–700MB/s depending on traffic from the 10GbE port.

These variances are expected, given shared PCIe lanes and bandwidth contention, but overall results were respectable. Multimedia performance was also acceptable, with Plex running smoothly and able to stream and scrape metadata while supporting light VM usage concurrently.

In these scenarios, RAM utilization climbed past 50% and CPU usage approached 100%, but the board remained operational and responsive. It’s clear that ZimaBoard 2 is well-suited to low-to-moderate workloads, and can punch above its weight with strategic expansion. However, pushing it into more demanding territory—like simultaneous virtualization, AI inferencing, or high-speed file serving across multiple interfaces—will begin to test its limits.

The lack of active cooling makes thermal planning essential for any serious workload. But overall, the ZimaBoard 2 feels polished and reliable, with a design philosophy that caters well to its core audience of DIY server builders and edge compute experimenters.

Zimaboard 2 Review – Software

ZimaBoard 2 ships with ZimaOS, a custom-built operating system from IceWhale that is based on CasaOS—a lightweight, open-source platform designed for simplicity and ease of deployment. ZimaOS retains the core principles of CasaOS but adds refinements tailored to the Zima ecosystem, particularly features that emerged during development of the more powerful ZimaCube. The out-of-the-box experience is beginner-friendly, offering an intuitive web dashboard called “LaunchPad,” which centralizes access to installed applications, system controls, and file management.

ZimaOS is pre-installed on the board’s eMMC storage, enabling immediate setup without requiring users to flash a drive or download additional software. Despite the modest resources of the ZimaBoard 2, the OS performs responsively, even with several services running in parallel. The interface is clean, albeit minimalistic, focusing on usability over deep customization.

For users who are new to home servers or Docker deployments, the learning curve is surprisingly gentle. Though it lacks some of the granularity of more established platforms like OpenMediaVault or TrueNAS, it’s clear that IceWhale has designed ZimaOS to get users up and running quickly without sacrificing key functionality.

One of the more distinctive features of ZimaOS is its integrated App Store, which acts as a curated hub for Docker-based applications. Unlike traditional NAS interfaces that require command-line Docker commands or extensive Portainer configuration, ZimaOS simplifies deployment through one-click installation and automated environment setups.

Popular applications like Plex, Jellyfin, Stable Diffusion, and more are available by default, with the option to add third-party sources for broader container variety. Behind the scenes, the system leverages containerization frameworks to handle resource isolation and volume mappings, but much of this complexity is hidden from the end user.

Application setup is further eased by pre-configured defaults such as port assignments, directory structures, and even PUID/PGID settings, reducing friction for non-technical users. For those with more experience, ZimaOS still allows you to tweak or override these settings manually. Notably, ZimaOS also includes a basic virtualization interface that supports downloading and running lightweight VMs using prebuilt images.

While this feature is better suited to the higher-specced ZimaCube due to memory and cooling constraints, its presence on the ZimaBoard 2 is still a nice touch and shows that the OS is aiming to grow into a more comprehensive platform. Overall, the application and container ecosystem here punches above its weight, especially considering the resource constraints of the board itself.

In terms of storage and file sharing, ZimaOS delivers a capable if somewhat minimal feature set that prioritizes simplicity over enterprise-style depth. Users can create RAID groups—a new feature compared to earlier CasaOS iterations—manage individual drives, and set up file-level sharing using standard protocols like SMB.

The file manager, accessible through the main dashboard, allows for browsing, copying, and sharing content in a familiar web-based interface. Integration with IceWhale’s own client tool enables a peer-to-peer feature called “peerdrop,” which links multiple Zima-based systems or client devices (like phones and laptops) for rapid syncing and data exchange.

This is especially useful for users who want an easy method to upload media, backup devices, or move files between multiple systems on a local network. Remote access can be enabled through a simple relay-based mechanism, which generates shareable links for specific files or folders, complete with read/write controls. While more advanced access control, encryption, or user quotas are not present in this build, the essentials for home or small office use are here and function as expected.

Cloud integration is also available, allowing the addition of third-party storage such as Google Drive or Dropbox for backup or syncing purposes. Though ZimaOS doesn’t try to replace full-fledged NAS operating systems in terms of depth, it successfully delivers the features most users will need, and its lightweight design ensures responsiveness even on modest hardware like the ZimaBoard 2.

Zimaboard 2 Review – Conclusion & Verdict

The ZimaBoard 2 is a competent and thoughtfully assembled single-board server that builds meaningfully on IceWhale’s earlier efforts, especially the original ZimaBoard and the ZimaBlade. Its design clearly targets users who want more flexibility and performance than traditional ARM-based boards can offer, but who also value power efficiency, silence, and a small footprint. The use of an Intel N150 CPU, 8GB of LPDDR5x memory, dual 2.5GbE ports, and a PCIe 3.0 x4 slot makes it viable for a variety of home server roles—from basic NAS and smart home coordination to lightweight container hosting and local media streaming. Features like onboard SATA, USB 3.1, and a DisplayPort connection further add to its utility. However, there are hardware limitations that may affect long-term suitability for advanced deployments. The soldered RAM cannot be upgraded, and the internal eMMC storage, while useful for initial setup, is too slow for OS-level responsiveness in more demanding use cases. Passive cooling, while appreciated for silence, also imposes some thermal limitations depending on the deployment environment.

On the software side, ZimaOS offers a decent out-of-the-box experience that caters to users with minimal technical background. It handles core tasks like application deployment, file sharing, and system monitoring without requiring advanced configuration, and its Docker-based App Store simplifies access to popular tools. For more experienced users, the system supports third-party OS installation, which is likely how many will ultimately use the ZimaBoard 2. Still, as a bundled solution, ZimaOS has matured significantly and now presents itself as a lightweight, capable, and non-intrusive platform for those who prefer to get started immediately. In the broader context of DIY server hardware, ZimaBoard 2 occupies a middle ground: more powerful and modular than Raspberry Pi-class systems, yet more constrained than full x86 mini PCs or enthusiast-grade NAS hardware. For those who understand and accept these trade-offs, and are willing to plan around its limitations, the ZimaBoard 2 offers a reliable and flexible foundation for compact, energy-efficient computing at the edge.

PROs of the Zimaboard 2 CONs of the Zimaboard 2
  • x86 Architecture – Compatible with a wide range of operating systems including ZimaOS, Unraid, TrueNAS SCALE, and Proxmox.

  • Dual 2.5GbE LAN Ports – Offers strong networking capabilities for multi-service workloads and gateway setups.

  • PCIe 3.0 x4 Slot – Enables high-speed expansion for 10GbE NICs, NVMe storage, or combo cards.

  • Fanless, Silent Operation – Completely passively cooled, ideal for home or quiet office environments.

  • Compact and Durable Build – Small footprint with an all-metal chassis that doubles as a heatsink.

  • ZimaOS Included – User-friendly OS with a Docker-based App Store and basic VM tools, ready out of the box.

  • Flexible Storage Options – Dual SATA ports plus USB 3.1 support for connecting SSDs, HDDs, or external drives.

  • Low Power Consumption – Efficient 6W CPU with ~10W idle and ~40W max under heavy load scenarios.

  • Non-Upgradable RAM – 8GB of soldered LPDDR5x limits long-term scalability for memory-intensive tasks.

  • Slow/Small Default Internal Storage – 32GB eMMC is convenient but underperforms for OS-level responsiveness or high I/O workloads.

  • Thermal Headroom is Limited – Passive cooling alone may not be sufficient in closed environments or under sustained load without added airflow.

  • Not launching on Traditional Retail, but instead on Crowdfunding.

NOTE – You can visit the Zimaboard 2 Crowdfunding Page (live from 10:30AM ET 22nd April 2025) by clicking the banner below. The entry price for early backers is $169, but that will revert to $179 (and $239 for a scaled-up storage and memory version). I DO NOT receive any kind of affiliate commission or sponsorship for this review (and this review, like all reviews at NASCompares, was done without the brand in question’s interference or input). You can use the link HERE to see the campaign for yourself and/or click the banner below:

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

ZimaOS : le système d’exploitation pour CasaOS

Par : Fx
14 avril 2025 à 07:00
ZimaOS - ZimaOS : le système d'exploitation pour CasaOS

ZimaOS est une distribution Linux basée sur Debian, conçue pour simplifier l’auto-hébergement tout en offrant des fonctionnalités avancées pour les NAS. Elle s’installe en quelques minutes et ne nécessite quasiment aucune intervention humaine pendant l’installation. Ce qui rend ZimaOS unique, c’est son intégration native avec CasaOS. Cependant, ZimaOS ne se limite pas à cette seule fonctionnalité : elle élargit considérablement les possibilités offertes…

ZimaOS

CasaOS : Une solution d’auto-hébergement simplifiée

CasaOS est une plateforme qui facilite l’auto-hébergement grâce à une interface élégante et conviviale. Elle permet aux utilisateurs de déployer des applications en quelques clics et de gérer leur espace de stockage avec une grande simplicité. Cependant, CasaOS présente certaines limitations importantes :

  • Ce n’est pas un système d’exploitation : CasaOS doit être installé sur un OS existant, ce qui peut compliquer sa mise en œuvre pour certains utilisateurs ;
  • Absence de gestion RAID : C’est un point critique pour ceux qui souhaitent utiliser CasaOS sur un NAS ;
  • Pas de virtualisation : CasaOS ne permet pas de créer ou gérer des machines virtuelles, ce qui limite son potentiel pour les utilisateurs avancés.

C’est là qu’entre en scène ZimaOS

ZimaOS vient corriger ces absences

ZimaOS est une distribution atypique à bien des égards. Tout d’abord, elle s’installe facilement sans intervention (tout est entièrement automatisé), si ce n’est le choix du disque d’installation. Le système se configure automatiquement en fonction du matériel détecté. Une fois l’opération terminée et le système redémarré, ZimaOS et CasaOS sont prêts à l’emploi !

zimaos vs cacaos - ZimaOS : le système d'exploitation pour CasaOS

Les fonctionnalités clés de ZimaOS :

  • Gestion du RAID : Il prend en charge plusieurs modes RAID (RAID 0, RAID 1 et RAID 5) dès l’installation.
  • Optimisation de CasaOS : ZimaOS intègre CasaOS comme plateforme centrale d’auto-hébergement, avec un espace de stockage accessible par défaut via le réseau local.
  • Virtualisation intégrée : ZimaOS peut exécuter des machines virtuelles, offrant ainsi la possibilité de lancer un système Windows ou Linux directement depuis l’interface Web.
  • Applications multiplateformes : L’équipe derrière ZimaOS propose également des applications compatibles avec Windows et macOS pour gérer votre système (et sauvegarde votre ordinateur en Beta). De plus, des applications mobiles devraient arriver prochainement pour iOS et Android.

J’aurais pu citer également la prise en charge du Thunderbolt 4, les sauvegardes automatiques, l’accès à distance, etc.

Alors, tout n’est pas rose avec ZimaOS. Certains modes RAID sont encore absents. Les machines virtuelles, bien que fonctionnelles, ne disposent pas encore de système de sauvegarde ou d’import-export. Je ne parle même pas de la possibilité de chiffrer (encrypter) les données.

En synthèse

ZimaOS représente une alternative intéressante dans le domaine des distributions Linux dédiées à l’autohébergement et aux NAS DIY. En combinant la simplicité de CasaOS avec des fonctionnalités essentielles, telles que la gestion RAID et la virtualisation, elle offre une solution adaptée aux besoins du quotidien. Cependant, il reste quelques améliorations à apporter, notamment au niveau du support RAID, des outils pour les sauvegardes ou encore la gestion des machines virtuelles.

Pour découvrir davantage sur ZimaOS ou contribuer au projet open source, rendez-vous sur la page officiel GitHub.

CasaOS : solution open source pour l’auto-hébergement simplifé

Par : Fx
2 avril 2025 à 07:00
CasaOS - CasaOS : solution open source pour l'auto-hébergement simplifé

CasaOS est un système open source conçu pour simplifier la gestion d’un serveur domestique, qu’il s’agisse d’un cloud personnel, d’un homelab ou de tout autre usage similaire. Intuitif et accessible, il offre une solution idéale pour centraliser et gérer vos applications en toute simplicité. Découvrons ensemble ses fonctionnalités et ses avantages…

CasaOS - CasaOS : solution open source pour l'auto-hébergement simplifé

CasaOS, c’est quoi ?

CasaOS permet de transformer n’importe quelle machine en Cloud personnel, offrant des fonctionnalités variées comme :

  • Stockage et partage de fichiers ;
  • Autohébergement ;
  • Streaming multimédia ;
  • Automatisation et gestion d’appareils connectés ;
  • Installation d’applications avec une interface utilisateur intuitive.

CasaOS : OS ou application ?

Contrairement à ce que son nom pourrait laisser penser (OS : Operating System ou système d’exploitation en français), CasaOS n’est pas un système d’exploitation. Il s’ajoute à un système Linux existant : Debian, Ubuntu, Raspberry Pi OS… CasaOS repose sur ce système sous-jacent pour exécuter ses services et utilise Docker pour gérer les applications. Son interface utilisateur simplifiée rend son utilisation accessible à tous.

Capture CasaOS - CasaOS : solution open source pour l'auto-hébergement simplifé

Comme indiqué précédemment, le code source CasaOS est ouvert et disponible à cette adresse.

Quelles sont les origines de CasaOS ?

CasaOS a été créé en 2021 par IceWhale Technology, une société basée à Shanghai en Chine. Cette dernière fabrique avant tout du matériel : ZimaBoard (une carte similaire au Raspberry Pi), ZimaCube (NAS complet), ZimaBlade

Pourquoi utiliser CasaOS ?

CasaOS est idéal pour les utilisateurs recherchant à centraliser leurs données personnelles tout en réduisant leur dépendance aux services Cloud publics.

Avantages Description
Facilité d’installation et d’utilisation Installation simplifiée via un script, accessible même aux débutants
Compatibilité étendue avec Docker Intégration native de Docker pour gérer facilement des applications
Personnalisation et diversité des apps App Store intégré permettant l’installation d’applications auto-hébergées comme Nextcloud, Syncthing, Jellyfin, AdGuard Home, Immich, Home Assistant…
Coût réduit Open source et utilisable sur du matériel existant (Raspberry Pi ou PC), réduisant les coûts
Interface intuitive Moderne et conviviale, idéale pour ceux recherchant une expérience simplifiée

Comme le système est principalement basé sur Docker, il sera facile d’ajouter des applications qui ne seraient pas présentes depuis l’App Store.

Cependant, CasaOS a quelques défauts/contraintes. Tout d’abord, il n’est pas autonome. Il nécessite d’avoir au préalable installé un système d’exploitation. Cela pourrait en freiner plus d’un. Ensuite, CasaOS ne sait pas gérer de RAID nativement, ce qui peut poser quelques soucis si on veut le mettre sur un NAS. Aussi, l’écosystème de CasaOS est encore trop limité et dépendant à Docker. Il n’est pas possible de faire tourner des machines virtuelles. Enfin, CasaOS est développé par une entreprise chinoise encore jeune, ce qui peut soulever des questions sur la pérennité du projet et la réactivité en cas de besoin de support.

Est-ce que CasaOS peut fonctionner sur un NAS ?

Oui, il peut tout à fait fonctionner sur un NAS DIY ou un NAS du marché dont le fabricant aurait laissé la possibilité d’installer un système alternatif. Il offrira une seconde vie aux NAS qui ne sont plus maintenus par leur fabricant.

En synthèse

CasaOS est un système flexible et économique pour ceux qui souhaitent personnaliser leur serveur à la maison sans investir dans un NAS dédié. Il offre une grande simplicité d’utilisation et de personnalisation. Cependant, il s’agit avant tout d’un système qui s’ajoute à un système d’exploitation. Certaines fonctionnalités avancées, comme le support natif du RAID ou la fiabilité optimisée des systèmes NAS traditionnels, ne seront pas directement présentes dans CasaOS.

Pour tester CasaOS ou en savoir plus, rendez-vous sur le site officiel

Prochainement, nous aborderons ZimaOS… Le système d’exploitation proposé par IceWhale Technology.

❌
❌