Fortinet s'est exprimé au sujet de la nouvelle faille zero-day (CVE-2025-64446) découverte dans FortiWeb et déjà exploitée : voici comment se protéger.
Depuis octobre 2025, une nouvelle faille dans Fortinet FortiWeb est exploitée pour créer des comptes admins à distance, sans authentification : patchez !
ImunifyAV, le scanner AV qui protège 56 millions de sites Linux, vient de se faire pwn par le malware qu’il essayait de détecter. Et c’est pas la première fois…
En effet,
Patchstack
vient de révéler une faille RCE critique dans ImunifyAV, qui je le rappelle est un scanner antivirus gratuit ultra répandu dans l’hébergement mutualisé. Le problème en fait c’est que AI-bolit, le composant qui déobfusque le code PHP malveillant pour l’analyser, utilise la fonction call_user_func_array sans vérifier les noms de fonctions qu’elle exécute.
Boooh ! Du coup, vous uploadez un fichier PHP malveillant spécialement conçu pour l’occasion par un attaquant, ImunifyAV le scanne pour voir si c’est un malware, le déobfusque pour comprendre ce qu’il fait, et hop, le code malveillant s’exécute avec les privilèges du scanner.
Game over.
Hé pour qu’un antimalware détecte un virus, il doit analyser son code mais si les cybercriminels obfusquent leur malware pour cacher le code, l’antimalware doit alors le déobfusquer avant d’analyser. Mais déobfusquer du code PHP, ça veut dire aussi l’exécuter partiellement pour voir ce qu’il fait vraiment… d’où cette RCE.
La faille affecte donc toutes les versions avant la 32.7.4.0 et le correctif apporte juste une fonctionnalité de whitelist de fonctions autorisées pendant la déobfuscation. Il était temps, même si maintenir une whitelist de fonctions safe, à terme c’est un cauchemar car y’a des centaines de fonctions dans PHP. Certaines sont safe seules mais dangereuses combinées et je pense que les cybercriminels trouveront toujours un moyen de contourner cette whitelist.
En tout cas, comme je le laissais entendre en intro, c’est pas la première fois qu’AI-bolit se fait avoir sur la déobfuscation. En 2021,
Talos avait déjà trouvé une faille
sur unserialize dans le même composant. C’est la même blague car pour analyser du code malveillant sérialisé, il faut le désérialiser. Et désérialiser du contenu malveillant sans validation, ça fait “pwn” !
Voilà, 2 fois en 4 ans sur le même composant, c’est pas ce que j’appelle un accident. C’est un problème structurel car détecter du malware sans l’exécuter, c’est quasi impossible avec du code dynamique. Les signatures statiques ça marche bien pour les virus classiques mais face à du PHP obfusqué qui se reconstruit à l’exécution, vous êtes obligé de lancer le code pour voir ce qu’il fait vraiment. Et là, on est forcement en zone grise…
Même si on exécute du code potentiellement malveillant dans un environnement censé être isolé, si celui-ci “fuit” ou si le code malveillant trouve un moyen de sortir de la sandbox, vous avez une RCE. Et comme ImunifyAV tourne avec les privilèges nécessaires pour scanner tous les fichiers d’un serveur mutualisé, si vous compromettez cet antivirus, vous avez potentiellement accès à tous les sites hébergés sur la machine.
Si vous voulez tester, voici le proof of concept :
Placez ensuite ce poc.php quelque part, puis lancez le scanner ai-bolit dessus, et ça devrait créer un fichier dans /tmp si vous êtes à risque.
php ai-bolit.php -y -j poc.php
Voilà, si vous gérez des serveurs avec ImunifyAV, vous savez ce qu’il vous reste à faire ! Une bonne mise à jour !
Et bien sûr, si vous vous inquiétez, sachez que y’a aucun moyen de savoir si vous avez été compromis avant le patch. Faut patcher, et prier pour que personne n’ait exploité la faille entre sa découverte et sa publication.
Microsoft a corrigé une faille de sécurité dans le mécanisme de délégation Kerberos (CVE-2025-60704) utilisé avec l'Active Directory. Quels sont les risques ?
Je vais vous raconter la meilleure de la semaine… Microsoft vient quand même de passer 5 ans à gueuler sur tous les toits que
BinaryFormatter
est dangereux (ça servait à sérialiser/desérialiser des objets en binaire ave .NET) et qu’il faut arrêter de l’utiliser… et pourtant, on vient d’apprendre qu’ils continuent secrètement de l’utiliser dans WSUS (Windows Server Update Services), leur système censé sécuriser les mises à jour Windows.
Et bien sûr, ce qui devait arriver, arriva… Une magnifique faille critique dans WSUS vient d’être rendue publique, ce qui met en danger environ 500 000 serveurs WSUS actuellement accessibles via le net.
L’histoire commence en réalité en 2020. A cette date, Microsoft déclare officiellement que BinaryFormatter est dangereux, ce qui ne les empêche pas de se faire poutrer Exchange, Azure DevOps, SharePoint en 2021/2021 justement à cause de ça. Du coup, en 2023, ils annoncent le bannissement total de BinaryFormatter en interne. En 2024, ils effectuent même une mise au rebus complète de .NET 9.
Mais c’était sans compter sur cette jolie CVE-2025-59287 d’octobre 2025 qui exploite à son tour BinaryFormatter dans WSUS !
Un oubli ? Pas si sûr, car Microsoft l’utilisait toujours pour déchiffrer les cookies d’authentification de WSUS, rendant ainsi ce système de mises à jour censé protéger Windows vulnérable. La faille, c’est donc une désérialisation non sécurisée. Un attaquant non authentifié envoie une requête SOAP craftée au endpoint GetCookie de WSUS, avec un cookie AuthorizationCookie contenant un payload malveillant. Et de son côté le serveur déchiffre ce truc avec AES-128-CBC, puis passe le résultat directement à BinaryFormatter pour désérialisation.
Et là, bim bam boum, une magnifique exécution de code arbitraire avec privilèges SYSTEM !
Techniquement, la vulnérabilité touche donc les Windows Server 2012 à 2025 qui ont le rôle WSUS activé. Le score CVSS de cette faille est quand même de 9,8 sur 10 ce qui est fait une faille super critique.
L’exploitation de cette faille débute le 24 octobre soit juste après la publication du patch d’urgence de Microsoft sortie la veille c’est à dire le 23 octobre, pour corriger lui-même un autre patch publié juste avant le 8 octobre. Bref un vrai bordel et il faut croire que les attaquants ont attendu la sortie de ce patch d’urgence pour comprendre comment fonctionnait la faille (
l’exploit est ici
).
De son côté, Google Threat Intelligence traque l’acteur cybercriminel UNC6512 qui a ciblé plusieurs organisations et les chiffres font pas plaisir puisque ce sont environ 100 000 tentatives d’exploitation en 7 jours qui ont eu lieues, et 500 000 serveurs WSUS exposés sur le net sur les ports par défaut (8530 HTTP, 8531 HTTPS).
Microsoft a dû sentir la douille arriver puisqu’ils ont déprécié WSUS en septembre de l’année dernière au profit d’autres solutions comme Intune ou WUfb, soit un an avant la sortie de la CVE. Mais bien sûr, comme l’outil reste dans Windows Server 2025 avec ses 10 ans de support réglementaire, des centaines de milliers d’entreprises l’utilisent encore…
Le chaos était garanti ! Maintenant vous me connaissez, je n’aime pas vous laisser sans solution, alors pour les admins sys qui lisent ça, sachez qu’il existe un script PowerShell baptisé
Find-WSUS
qui permet de détecter tous les serveurs WSUS configurés dans vos GPO. C’est pratique pour faire l’inventaire et vérifier que tout est patché. Et notez aussi que le patch d’urgence c’est le KB5070883. Et si vous ne pouvez pas patcher immédiatement parce que la vie est injuste, désactivez quand même le rôle WSUS de vos Windows Server, ou bloquez les ports 8530/8531 directement dans votre firewall.
Le vrai problème en fait, c’est que WSUS n’est qu’un symptôme car une grosse partie du code en entreprise est constitué de dette technique. C’est à dire du code “mort” qui continue de tourner car personne n’ose y toucher. Brrr… ça fait peur c’et sûr ! Surtout que même Microsoft n’arrive pas à tuer sa propre création 5 ans après l’annonce de sa mort officielle, donc autant dire qu’on a tous un sérieux problème.
Microsoft a publié une nouvelle mise à jour hors bande à destination de Windows Server pour patcher une faille critique découverte dans WSUS : CVE-2025-59287.
Dans le cadre de la campagne Zero Disco, les pirates ciblent les équipements Cisco via une faille de sécurité (CVE-2025-20352) pour déployer des rootkits.
Plus de 200 000 machines Framework sous Linux ont été livrées avec un UEFI vulnérable qui met en péril le Secure Boot : les bootkits peuvent en profiter.
Y’a plein de problèmes avec les IA, mais y’en a un encore un peu trop sous-estimé par les vibe codeurs que vous êtes… Ce problème, c’est qu’on leur fait confiance comme à un collègue, on leur montre notre code, nos repos privés, nos petits secrets bien planqués dans les variables d’environnement…
Par exemple, quand vous passez en revue une pull request sur GitHub, vous faites quoi ? Vous lisez le code ligne par ligne, vous cherchez les bugs, les failles de sécu, les optimisations possibles. Mais les commentaires vous les lisez ? Au mieux on les survole, c’est vrai, car c’est de la comm’ entre devs, et pas du code exécutable.
Sauf pour Copilot Chat pour qui un commentaire c’est un texte comme un autre. Et
selon Omer Mayraz
, chercheur en sécurité chez Legit Security, c’est exactement ce qui en fait une zone de confiance aveugle parfaite pour une attaque.
Ce qu’a découvert Omer Mayraz c’est donc une vulnérabilité critique dans GitHub Copilot Chat avec un score CVSS de 9.6 sur 10. Cela consiste à planquer des instructions malveillantes dans des commentaires markdown invisibles comme ça, ces commentaires ne s’affichent pas dans l’interface web de GitHub, mais Copilot Chat les voit parfaitement et les traite comme des prompts légitimes.
Du coup, l’attaquant peut forcer Copilot à chercher des secrets dans vos repos privés, à extraire du code source confidentiel, voire à dénicher des descriptions de vulnérabilités zero-day non publiées. Tout ça sans que vous ne voyiez rien venir évidemment !
Voici une démo complète de l’attaque en vidéo :
La première étape c’est donc l’injection de prompt via un commentaire caché. Rien de révolutionnaire, mais efficace. Ensuite, deuxième étape : le bypass de la Content Security Policy de GitHub. Normalement, Copilot Chat ne peut charger que des ressources depuis des domaines appartenant à GitHub. Il est donc impossible d’envoyer des données vers un serveur externe.
Mais c’était sans compter sur le fait que GitHub dispose d’un proxy appelé Camo, conçu à l’origine pour sécuriser l’affichage d’images externes en les servant via HTTPS et en évitant le tracking. C’est donc ce proxy de sécurité qui devient l’outil d’exfiltration. Avec ce proxy, toutes les URLs d’images externes sont automatiquement transformées en URLs Camo du type https://camo.githubusercontent.com/[hash unique] et Mayraz a simplement utilisé l’API GitHub pour pré-générer un dictionnaire complet de ces URLs Camo, chacune pointant vers un emplacement unique sur son serveur.
Troisième étape, l’exfiltration des données. Au lieu de faire passer les secrets directement dans les URLs (trop visible), Mayraz a eu l’idée d’utiliser l’ordre des requêtes. Chaque lettre de l’alphabet correspond à une URL Camo unique. En faisant charger ces URLs dans un ordre précis, on peut ainsi transmettre des données texte comme avec un alphabet ASCII artisanal. C’est plutôt créatif comme approche, je trouve.
C’est exactement le même principe que les attaques ultrasoniques contre Alexa ou Siri. Si vous ne vous en souvenez pas, des chercheurs avaient démontré qu’on pouvait envoyer des commandes vocales à des fréquences inaudibles pour l’oreille humaine, mais parfaitement comprises par les assistants vocaux.
Bah ici, c’est pareil… On a des prompts invisibles pour les humains mais que l’IA voit et exécute sans broncher. Comme pour les enceintes, on parle à la machine sans que l’humain ne s’en aperçoive et la différence, c’est qu’au lieu de jouer sur les fréquences sonores, on joue sur le markdown et les commentaires cachés.
Du coup, chaque pull request externe est un potentiel cheval de Troie. Un contributeur externe soumet par exemple une PR apparemment légitime, avec un commentaire invisible qui ordonne à Copilot de chercher “AWS_KEY” dans vos repos privés. Vous de votre côté, vous ouvrez la PR dans votre éditeur, Copilot Chat s’active bien sûr automatiquement, et hop, vos clés API partent chez l’attaquant.
Quand on sait que GitHub a créé Camo justement pour améliorer la sécurité, ça fout un peu les boules. Bref, grâce à son proof-of-concept, Mayraz a réussi à exfiltrer des clés AWS, des tokens de sécurité, et même la description complète d’une vulnérabilité zero-day stockée dans une issue privée d’une organisation et tout ça sans aucune interaction suspecte visible par la victime.
Heureusement, notre joyeux chercheur a prévenu GitHub qui a réagi assez vite. Le 14 août l’entreprise a complètement désactivé le rendu d’images dans Copilot Chat, comme ça plus d’images, plus de problème. C’est radical, c’est sûr mais c’est efficace !
Quoiqu’il en soit, ces histoires de prompt injection c’est un problème fondamental propre aux LLM qui sont encore actuellement incapable de distinguer de manière fiable les instructions légitimes des instructions malveillantes. Ça reste donc un problème de confiance…
Dans ce cas précis, on fait confiance à GitHub pour héberger notre code du coup, on fait confiance à Copilot pour nous aider à développer, tout comme on fait confiance aux contributeurs externes pour soumettre des PR de bonne foi. Et nous voilà avec une jolie chaîne de confiance prête à être exploitée…
Bref, CamoLeak c’est que le début de cette nouvelle vague de vuln liées aux assistants IA qui se retrouvent intégrés dans nos outils de développement… Donc ouvrez l’oeil car on ne sait jamais ce qui sa cache vraiment dans une pull request.
La faille zero-day (CVE-2025-10035) découverte dans GoAnywhere MFT est exploitée par le groupe Storm-1175 : le ransomware Medusa est utilisé dans certains cas.
Une faille zero-day a été découverte dans la solution Oracle E-Business Suite : CVE-2025-61882. Le problème : le groupe Cl0p l'exploite pour voler des données !
Une faille de sécurité critique (CVE-2025-49844) a été découverte dans Redis : elle expose des milliers d'instances à une exécution de code à distance.
Les utilisateurs d'un NAS Western Digital sont invités à installer la dernière version de My Cloud OS 5 : une faille critique a été corrigée (CVE-2025-30247).
Un chercheur a découvert qu'il était possible de se connecter sur n'importe quel tenant Entra ID avec les Actor Tokens et une faille dans l'API Azure AD Graph.