FreshRSS

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

Seagate Ironwolf 525 vs 510 NAS NVMe SSD Comparison

29 décembre 2021 à 01:10

Comparing the Seagate Ironwolf 510 vs Seagate Ironwolf 525 – Which Should You Use in Your NAS?

The Seagate Ironwolf series of NAS media has been around for a few years now and what started as a rebranding of their ‘NAS’ labelled series has now become a multi-tiered series of Hard drives and SSDs. Recently Seagate introduced a new entry into their Ironwolf SSD series with the 525 NVMe SSD. Presented as a higher bandwidth supporting alternative NVMe SSD to the Ironwolf 510 (released back in March 2020), the Ironwolf 525 is a PCIe Gen 4 NVMe SSD that arrives in slightly larger capacities, much higher performance and still allowing backwards compatibility with PCIe Gen 3 m.2 slots in your NAS. So, with the release of this newer, faster and widely supported NVMe SSD, should you still consider buying the Seagate Ironwolf 510 at all? Well, yes! The older Ironwolf 510 still arrives with a few rather unique architecture and design choices that are not available in the Ironwolf 525 and today I want to take a close look at each of these NAS focused SSDs and help you decide which one you should buy for your NAS drive in 2021/2022.

Important – It is worth remembering that the two SSDs in today’s comparison are m.2 NVMe in architecture and although PCIe Gen 4 is compatible with Gen 3 and old, they will not suitable for NAS drives with M.2 SATA connections. We have seen more modern NAS systems released in the last few years abandon m.2 SATA in favour of its PCIe counterpart, but Seagate provides SATA alternatives in their Ironwolf series. Examples of SATA SSDs for NAS can be found HERE on Amazon. Additionally, it is worth highlighting for the later stages of testing in this comparison, I was only able to obtain the 240GB model of the Ironwolf 510, so although the performance shown is low (and much lower than the Ironwolf 525 as expected in most cases) it is particularly low because the test drive is the 240GB Model. Please follow the official performance specifications in the table below for a better indication of how comparable capacity drives would differ.

How do the Seagate Ironwolf 525 and Seagate Ironwolf 510 SSD Compare on Specs?

Seagate are well known for their wide ranges of hard drive and SSD media, as well as both being pioneers of NAS server focused SSDs for caching and flash storage. Although SSDs are all built to a similar ground-level architecture, they will often have their later development shifted in favour of a specific targetted use. This is not a big surprise and much like the cutlery in your kitchen draw, they might be similar but one tool is much better at some tasks than others – ever tried using a spreading butter with a meat-claver? Or stirring tea with a ladle? The Seagate Ironwolf 525 and Seagate Ironwolf 510 SSD are NAS targetted and although the performance is good, the true stand out factor in this design is the durability of the drive. SSDs for use in NAS systems will in most cases be used for caching and that means a very frequent turnover (i.e. data wrote, updated, deleted, repeat) daily as the demands of client users and devices change. Both of these SSDs arrive with a high level of durability and workload rating, but the Seagate Ironwolf 510 and Seagate Ironwolf 525 definitely have differing ideas of preliminary architecture and what that price tag is being spent on. Let’s look at the shared base-level SSD architecture of each SSD (available on every capacity):

Below Specifications are taken from official brand sources, data sheets and reputable sources (real-world tests we performed ourselves are a little lower in the article):

Specifications

Seagate IronWolf 525

Released September 2021

Seagate IronWolf 510

Released March 2020

Warranty 5yr + 3yr Rescue 5yr + 3yr Rescue
MTBF/MTTF 1800000 1800000
PCIe Generation PCIe Gen 4×4 PCIe Gen 3×4
NVMe Rev NVMe 1.3 NVMe 1.3
NAND Kioxia BiCS 4 96L 3D TLC NAND Kioxia BiCS3 64L TLC
Controller PS5016 SSD Controller PS5012-E12DC

Seagate uses 3rd party controllers and NAND manufacturers for the most part in their ranges, but are still generally quite top tier providers. The release time difference between the Seagate Ironwolf 510 and Seagate Ironwolf 525 makes an impressive difference here in terms of the hardware on offer on either SSD, with the more recently released Seagate Ironwolf 525 having notably superior connectivity, NAND quality and overall performance. Both Seagate Ironwolf SSDs features 3 years of forensic level data recovery services though (which caching NAS users might want to have in the event of ‘trapped data’ during write caching operations and a critical system failure/power-cut) which is very unique to the brand. However, overall the Seagate Ironwolf 525 has the superior architecture here. Below is how the building blocks of the Seagate Ironwolf 525 and Seagate Ironwolf 510 result in throughput, IOPS and Durability at each capacity tier (based on officially provided figures):

240/250GB

Seagate IronWolf 525

Released September 2021

N/A

Seagate IronWolf 510

Released March 2020

ZP240NM30011 – $69

Sequential Read (Max, MB/s), 128 KB N/A 2,450MB
Sequential Write (Max, MB/s), 128 KB N/A 290MB
480/500GB ZP500NM30002 – $99 ZP480NM30011 – $119
Sequential Read (Max, MB/s), 128 KB 5000MB / 3400MB 2,650MB
Sequential Write (Max, MB/s), 128 KB 2500MB / 2500MB 600MB
960/1000GB ZP1000NM30002 – $179 ZP960NM30011 – $209
Sequential Read (Max, MB/s), 128 KB 5000MB / 3400MB 3,150MB
Sequential Write (Max, MB/s), 128 KB 4400MB / 3200MB 1,000MB
1920/2000GB ZP2000NM30002 – $369 ZP1920NM30011 – $409
Sequential Read (Max, MB/s), 128 KB 5000MB / 3400MB 3,150MB
Sequential Write (Max, MB/s), 128 KB 4400MB / 3200MB 850MB
3840/4000GB N/A N/A
Sequential Read (Max, MB/s), 128 KB N/A N/A
Sequential Write (Max, MB/s), 128 KB N/A N/A
240/250GB N/A ZP240NM30011 – $69
Random Read (Max, IOPS), 4 KB QD32 N/A 100K
Random Write (Max, IOPS), 4 KB QD32 N/A 12K
2480/500GB ZP500NM30002 – $99 ZP480NM30011 – $119
Random Read (Max, IOPS), 4 KB QD32 420K / 420K 193K
Random Write (Max, IOPS), 4 KB QD32 630K / 550K 20K
960/1000GB ZP1000NM30002 – $179 ZP960NM30011 – $209
Random Read (Max, IOPS), 4 KB QD32 760K / 640K 345K
Random Write (Max, IOPS), 4 KB QD32 700K / 565K 28K
1920/2000GB ZP2000NM30002 – $369 ZP1920NM30011 – $409
Random Read (Max, IOPS), 4 KB QD32 740K / 640K 270K
Random Write (Max, IOPS), 4 KB QD32 700K / 565K 25K
3840/4000GB N/A N/A
Random Read (Max, IOPS), 4 KB QD32 N/A N/A
Random Write (Max, IOPS), 4 KB QD32 N/A N/A
Heatsink Option No No
TBW Rating 700/1400/2800 435/875/1750/3500
DWPD Rating 0.7 DWPD 0.9-1.0 DWPD
Note – BLUE Text is the Seagate Ironwolf 525 on a PCIe Gen 3×4 Slot

Overall, it should come as no surprise that the Seagate Ironwolf 525 is the notable leader here in practically all official benchmarks over the slightly older Seagate Ironwolf 510 SSD, thanks to that improved architecture. Most notably in write performance and IOPS in general, it had a clear lead even in the lowest available capacities. Of course, these are officially provided performance figures and represent maximums based on the highest available hardware at the time of release. Let’s take a look at how these two SSDs compare in our own tests.

How Did the Seagate Ironwolf 510 and Seagate Ironwolf 525 Compare in OUR Tests?

Moving away from the official performance stats provided by WD and Seagate, I wanted to see how the Seagate Ironwolf 510 and 525 compared in my own tests. Testing of these two SSDs will be broken down into 3 main parts, a CrystalDisk Benchmark test, Atto Disk Benchmark Test and an AJA media test. In each test, the SSD was in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times and the system was left for 1 minute between tests to allow the SSD time to stabilize. The specifications of the test machine are:

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4×4 M.2 Slot

CrystalDisk 1GB Test File – Read, Write, 70/30% Mixed and IOPS Performance

CrystalDisk is still highly regarded as one of the most reliable tools for measuring storage media performance. Though it does create somewhat high-end results that may not be truly indicative of your own real-world setup, it can be used to display maximum potential throughput and IOPs at each tier. The first test for the Seagate Ionwolf 510 and Seagate Ironwolf 525 was on a 1GB test file:

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

CrystalDisk 4GB Test File – Read, Write, 70/30% Mixed and IOPS Performance

The next test was to perform the same parameters in CrystalDisk on the Seagate Ironwolf 525 and Seagate Ironwolf 510, but this time with a 4GB test file (larger files may result in higher sequential performance, but lower comparative IOPS):

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

ATTO DiskBenchmark 256MB Test File – Read, Write

Switching things up, I then moved testing the Seagate Ironwolf 510 and Seagate Ironwolf 525 over to ATTO disk benchmark. A far more detailed tool that spreads performance testing over different file and block sizes. I started with the smallest ‘full range’ test file of 256MB (as smaller would reduce the range of block sizes). Here is how each SSD compared:

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

ATTO DiskBenchmark 4GB Test File – Read, Write

Sticking with ATTO DiskBenchmark, I then moved the testing of the Seagate Ironwolf 525 and Seagate Ironwolf 510 onto a x16 bigger test file of 4GB. This would certainly shift where the peaks in performance would sit and hopefully produce a clearer disparity between these two SSDs:

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

AJA 1080i Media Test 1GB Test File – Read, Write

I then switched to AJA, a popular media testing tool for video formats. Most SSDs will suffer over-saturated Memory/DRAM/SDRAM as sustained large file tests go on. The 1GB file test of AJA on the Seagate Ironwolf 525 and Seagate Ironwolf 510 is still a small enough value not to be a problem though and we chiefly focused on the disk playback/reads graph to see how they compared in peak performance and also throughout the transfer:

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

AJA 1080i Media Test 16GB Test File – Read, Write

Then we used a much, MUCH heavier test in AJA of 16GB on the Seagate Ironwolf 510 and Seagate Ironwolf 525. Unsurprisingly this can often overflow the SSD cache/memory on board and result in a dip in performance as the SSD bottlenecks internally. So, when conducting this test, we are looking at peak performance AND how long the SSD maintained that performance before a potential dip. Here is how these two SSD compared:

Seagate Ironwolf 525

Seagate Ironwolf 510 SSD

Overall Winner: The Seagate Ironwolf 525

Seagate Ironwolf 525 vs Seagate Ironwolf 510 SSD – The Results

It is probably no surprise that the Seagate Ironwolf 525 is the better drive overall. With performance in throughput and IOPS that outshine the Ironwolf 510 in both Read and Write on a PCIe Gen 3 m.2 slot,  then upping the ante considerably by allowing 2-3x that performance via a PCIe 4 M.2 Connection. That said, the adoption of PCIe 4 x4 as the connection of choice in a NAS is currently very low indeed, largely down to the large availability of PCIe 3 SSDs in the market AND the simply fact that manufacturers would need to dedicate notably more CPU PCIe Lanes to a Gen 4 connection than they would a Gen 3 (lanes that might be better used in improved NAS external connectivity or other hardware services). Additionally, the Seagate Ironwolf 510 has higher durability in all capacities, as well as a smaller 240GB capacity for those considering caching on much smaller systems/HDDs. The Seagate Ironwolf 525 is still the better SSD choice over the Ironwolf, but if you see it at a bargain price, have intensive data re-writes in mind or are looking for a smaller SSD, it’s still a viable option. And don’t forget, both SSDs include that 3 year Rescue Data Recovery service and Seagate Ironwolf Health Management that is accessible via your NAS Storage Manager (supported on Synology, QNAP, Asustor and more).

The Seagate Ironwolf 525 NVMe SSD Wins on:

  • Higher Performance (Read & Write), even in a PCIe Gen 3 Slot
  • Supports PCIe Gen 4 M.2 NVMe SSD Slots
  • Better Sustained Performance
  • Massively Higher IOPS ratings (Read and Write)
  • Takes Advantage of a several gen higher Phison Controller

The Seagate Ironwolf 510 NVMe SSD Wins on:

  • Higher Durability at 0.9-1.0 DWPD on all Capacities (IW 525 t 0.7 DWPD)
  • Smaller 240GB Capacity Available
  • PCIe Gen 3 is still at more than 95% adoption on NAS systems compared with PCIe 4
  • Been available longer, so might have more flexible pricing online

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

 

#RunWithIronWolf This unit was supplied by @seagate and the preview provided was free of bias and my own independent opinions

WD Red SN700 vs Seagate Ironwolf 510 SSD for NAS Comparison

15 décembre 2021 à 01:22

Comparing the Seagate Ironwolf 510 vs WD Red SN700 SSD – Which Should You Use in Your NAS?

Over the last few years of NAS Drive releases from brands like Synology, QNAP and Asustor, we have seen most Prosumer and SMB releases arriving with support of either M.2 NVMe SSD bays, or PCIe slots that allow you to add this feature in the system’s lifespan. The appeal of SSD cache has grown considerably in recent years, as the demands in speed and responsiveness of the data on NAS drives has grown considerably. Despite the well-established fact that SSDs are faster than Hard drives, there is no ignoring that the available capacity and price point of hard drives makes them ultimately more viable and desirable in a NAS than SSDs. However, SSD Caching serves as a nice middle ground, allowing you to enjoy the bigger and lower cost hard drive RAID storage pools, but also adding two or more individual SSDs to bolster the system in performance. The Seagate Ironwolf 510 and WD Red SN700 are SSD’s that are designed with NAS use in mind and can be used in the process of write caching (where data is written to the faster performing SSD first, then migrated over to the HDDs), read caching (whereby more frequently accessed data is copied over to the SSDs in order to seed up their access by connected clients) or both together. There are numerous other SSD caching methods and protocols, but these are ultimately the most common and today I want to help you decide which NAS SSD you should install in your NAS Drive. There is around an 18-month release date difference between these two SSDs and although both are M.2 NVMe PCIe Gen 3×4 SSDs, there is a large degree of difference in their architecture to take into consideration. So let’s compare the WD Red SN700 and Seagate Ironwolf 510 and see which one deserves your cache.

It is worth remembering that the two SSDs in today’s comparison are m.2 NVMe in architecture and although PCIe Gen 4 is compatible with Gen 3 and old, they will not suitable for NAS drives with M.2 SATA connections. We have seen more modern NAS systems released in the last few years abandon m.2 SATA in favour of its PCIe counterpart, but both Seagate and WD both provide SATA alternatives in their Ironwolf and WD Red series. Examples of SATA SSDs for NAS can be found HERE on Amazon.

How do the WD Red SN700 and Seagate Ironwolf 510 SSD Compare on Specs?

Both WD and Seagate are well known for their wide ranges of hard drive and SSD media, as well as both being pioneers of NAS server focused SSDs for caching and flash storage. Although SSDs are all built to a similar ground-level architecture, they will often have their later development shifted in favour of a specific targetted use. This is not a big surprise and much like the cutlery in your kitchen draw, they might be similar but one tool is much better at some tasks than others – ever tried using a spreading butter with a meat-claver? Or stirring tea with a ladle? The WD Red SN700 and Seagate Ironwolf 510 SSD are NAS targetted and although the performance is good, the true stand out factor in this design is the durability of the drive. SSDs for use in NAS systems will in most cases be used for caching and that means a very frequent turnover (i.e. data wrote, updated, deleted, repeat) daily as the demands of client users and devices change. Both of these SSDs arrive with a high level of durability and workload rating, but the Seagate Ironwolf 510 and WD Red SN700 definitely have differing ideas of preliminary architecture and what that price tag is being spent on. Let’s look at the shared base-level SSD architecture of each SSD (available on every capacity):

Below Specifications are taken from official brand sources, data sheets and reputable sources (real-world tests we performed ourselves are a little lower in the article):

Specifications Seagate IronWolf 510

Released March 2020

WD Red SN700

Released September 2021

Warranty 5yr + 3yr Rescue 5yr
MTBF/MTTF 1,800,000 1,750,000
PCIe Generation PCIe Gen 3×4 PCIe Gen 3×4
NVMe Rev NVMe 1.3 NVMe 1.3
NAND Kioxia BiCS3 64L TLC Sandisk 96L 3D TLC NAND
Controller PS5012-E12DC WD NVMe Controller

As you might know, WD develops practically all of their SSDs ‘in-house’ and feature proprietary NVMe controllers, subsidiary company NAND (in this case Sandisk) and this allows them to be able to control availability and pricing in a way that most other SSD brands cannot. Seagate uses 3rd party controllers and NAND manufacturers for the most part in their ranges, but are still generally quite top tier providers. The release time difference between the Seagate Ironwolf 510 and WD Red SN700 makes an impressive difference here in terms of the hardware on offer on either SSD, with the more recently released WD Red SN700 having notably superior connectivity, NAND quality and overall performance. The older Seagate Ironwolf 510 SSD features 3years of forensic level data recovery services though (which caching NAS users might want to have in the event of ‘trapped data’ during write caching operations and a critical system failure/power-cut) which is very unique to the brand. However, overall the WD Red SN700 has the superior architecture here. Below is how the building blocks of the WD Red SN700 and Seagate Ironwolf 510 result in throughput, IOPS and Durability at each capacity tier (based on officially provided figures):

240/250GB Seagate IronWolf 510

Released March 2020

ZP240NM30011 – $69

WD Red SN700

Released September 2021

WDS250G1R0C$55

Sequential Read (Max, MB/s), 128 KB 2,450MB 3,100MB
Sequential Write (Max, MB/s), 128 KB 290MB 1,600MB
Random Read (Max, IOPS), 4 KB QD32 100,000 220,000
Random Write (Max, IOPS), 4 KB QD32 12,000 180,000
Total Terabytes Written (TBW) 435TB 500TB
DWPD 0.9-1.0 DWPD 1.0DWPD
480/500GB ZP480NM30011 – $119 WDS500G1R0C$79.99
Sequential Read (Max, MB/s), 128 KB 2,650MB 3,430MB
Sequential Write (Max, MB/s), 128 KB 600MB 2,600MB
Random Read (Max, IOPS), 4 KB QD32 193,000 420,000
Random Write (Max, IOPS), 4 KB QD32 20,000 380,000
Total Terabytes Written (TBW) 875TB 1000TB
DWPD 0.9-1.0 DWPD 1.0DWPD
960/1000GB ZP960NM30011 – $209 WDS100G1R0C$152.99
Sequential Read (Max, MB/s), 128 KB 3,150MB 3,430MB
Sequential Write (Max, MB/s), 128 KB 1,000MB 3,000MB
Random Read (Max, IOPS), 4 KB QD32 345,000 515,000
Random Write (Max, IOPS), 4 KB QD32 28,000 560,000
Total Terabytes Written (TBW) 1,750TB 2000TB
DWPD 0.9-1.0 DWPD 1.0DWPD
1920/2000GB ZP1920NM30011 – $409 WDS200G1R0C$289.99
Sequential Read (Max, MB/s), 128 KB 3,150MB 3,430MB
Sequential Write (Max, MB/s), 128 KB 850MB 2,900MB
Random Read (Max, IOPS), 4 KB QD32 270,000 480,000
Random Write (Max, IOPS), 4 KB QD32 25,000 540,000
Total Terabytes Written (TBW) 3,500TB 2500TB
DWPD 0.9-1.0 DWPD 0.7DWPD
1920/2000GB N/A WDS400G1R0C$649.99
Sequential Read (Max, MB/s), 128 KB N/A 3,430MB
Sequential Write (Max, MB/s), 128 KB N/A 3,100MB
Random Read (Max, IOPS), 4 KB QD32 N/A 550,000
Random Write (Max, IOPS), 4 KB QD32 N/A 520,000
Total Terabytes Written (TBW) N/A 5100TB
DWPD N/A 0.7DWPD

Overall, it should come as no surprise that the WD Red SN700 SSD is the notable leader here in practically all official benchmarks over the slightly older Seagate Ironwolf 510 SSD, thanks to that improved architecture. Most notably in write performance and IOPS in general, it had a clear lead even in the lowest available capacities. Of course, these are officially provided performance figures and represent maximums based on the highest available hardware at the time of release. Let’s take a look at how these two SSDs compare in our own tests.

How Did the Seagate Ironwolf 510 and WD Red SN700 SSD Compare in OUR Tests?

Moving away from the official performance stats provided by WD and Seagate, I wanted to see how the Seagate Ironwolf 510 and WD Red SN700 compared in my own tests. Testing of these two SSDs will be broken down into 3 main parts, a CrystalDisk Benchmark test, Atto Disk Benchmark Test and an AJA media test. In each test, the SSD was in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times and the system was left for 1 minute between tests to allow the SSD time to stabilize. The specifications of the test machine are:

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4×4 M.2 Slot

CrystalDisk 1GB Test File – Read, Write, 70/30% Mixed and IOPS Performance

CrystalDisk is still highly regarded as one of the most reliable tools for measuring storage media performance. Though it does create somewhat high-end results that may not be truly indicative of your own real-world setup, it can be used to display maximum potential throughput and IOPs at each tier. The first test for the Seagate Ionwolf 510 and WD Red SN700 was on a 1GB test file:

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

CrystalDisk 4GB Test File – Read, Write, 70/30% Mixed and IOPS Performance

The next test was to perform the same parameters in CrystalDisk on the WD Red SN700 and Seagate Ironwolf 510, but this time with a 4GB test file (larger files may result in higher sequential performance, but lower comparative IOPS):

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

ATTO DiskBenchmark 256MB Test File – Read, Write

Switching things up, I then moved testing the Seagate Ironwolf 510 and WD Red SN700 SSD over to ATTO disk benchmark. A far more detailed tool that spreads performance testing over different file and block sizes. I started with the smallest ‘full range’ test file of 256MB (as smaller would reduce the range of block sizes). Here is how each SSD compared:

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

ATTO DiskBenchmark 4GB Test File – Read, Write

Sticking with ATTO DiskBenchmark, I then moved the testing of the WD Red SN700 and Seagate Ironwolf 510 onto a x16 bigger test file of 4GB. This would certainly shift where the peaks in performance would sit and hopefully produce a clearer disparity between these two SSDs:

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

AJA 1080i Media Test 1GB Test File – Read, Write

I then switched to AJA, a popular media testing tool for video formats. Most SSDs will suffer over-saturated Memory/DRAM/SDRAM as sustained large file tests go on. The 1GB file test of AJA on the WD Red SN700 and Seagate Ironwolf 510 is still a small enough value not to be a problem though and we chiefly focused on the disk playback/reads graph to see how they compared in peak performance and also throughout the transfer:

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

AJA 1080i Media Test 16GB Test File – Read, Write

Then we used a much, MUCH heavier test in AJA of 16GB on the Seagate Ironwolf 510 and WD Red SN700 SSD. Unsurprisingly this can often overflow the SSD cache/memory on board and result in a dip in performance as the SSD bottlenecks internally. So, when conducting this test, we are looking at peak performance AND how long the SSD maintained that performance before a potential dip. Here is how these two SSD compared:

WD Red SN700 SSD

Seagate Ironwolf 510 SSD

Overall Winner: The WD Red SN700 SSD

WD Red SN700 vs Seagate Ironwolf 510 SSD – The Results

It will come as little surprise that in the case of comparing the WD Red SN700 and Seagate Ironwolf 510, the more recently released and more modern architecture WD SSD was the victor in the majority of tests (both official 1st party and my own). Although it has taken WD almost a year and a half to release a competitor NAS NVMe SSD to Seagate’s entry, it is unquestionable the better performing drive as it takes advantage of numerous newer innovations in SSD architecture that have been developed and released in that time. The Durability across the entire range of the Ironwolf 510 series and three years of inclusive forensic level data recovery do make the Seagate Ironwolf an attractive choice in 2021, but in NAS use, general use and performance overall, the WD Red SN700 wins the day.

The WD Red SN700 NVMe SSD Wins on:

  • Overall Read Performance
  • Overall Write Performance
  • 4K IOPs
  • Price Point per GB/TB
  • Capacity (4TB Max)

The Seagate Ironwolf 510 NVMe SSD Wins on:

  • Data Recovery Services (Rescue)
  • On-Board Over Provisioning
  • TBW and DWPD Overall

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

 

#RunWithIronWolf and #WDRedNAS . This unit was supplied by @seagate and @WesternDigitalCorporation .The review provided was free of bias and my own independent opinions

Test SSD NAS : WD Red SN700 1 To

8 novembre 2021 à 07:00
Par : Fx
test wd red SN700 300x225 - Test SSD NAS : WD Red SN700 1 ToLe fabricant Western Digital nous a envoyé son nouveau SSD WD Red SN700 au format NVMe. Destiné aux NAS (cache ou stockage), ce SSD dispose d’une garantie de 5 ans. Mais quels sont ses atouts ? Regardons de plus près ce nouveau produit… WD Red SN700 La série WD SN700 est sortie récemment (début octobre). Comme son nom l’indique, le SSD WD Red SN700 se destine à être inséré dans un NAS avec un fonctionnement 24h/24 et 7j/7. Le fabricant […]

Seagate Ironwolf 525 NAS NVMe SSD Revealed

20 septembre 2021 à 15:25

Seagate PCIe Gen 4 NVMe for NAS on its Way – The Ironwolf 525 SSD

Continuing their reputation for bringing new media releases to the market before everyone else, Seagate seemingly has a PCIe Gen 4.0 NVMe SSD in the pipeline for NAS/SAN server use in their Ironwolf series, known as the Seagate Ironwolf 525. Although little is publically know about this new SSD, the Ironwolf 525 has already begun to appear on numerous stock management and distribution sites in Europe, so this seems to indicate a likely release before the end of 2021. Seagate was one of the first brands in storage media to introduce a server dedicated class of SSDs for home and prosumer users (with a U.2/SAS series already in place for enterprise in their Nytro series of course) in both SATA and NVMe m.2, however even in this early leak of information, a few unique or interesting details have already emerged. So, let’s go through everything that we know so far and whether the Seagate Ironwolf 525 SSD will deserve your cache* later in 2021/2022

Seagate Firecuda 530 PCIe 4.0 NVMe SSD Review Here https://nascompares.com/2021/08/09/seagate-firecuda-530-ssd-review-the-score-to-beat

*I’ll get my coat…..

Click to view slideshow.

The Seagate Ironwolf 525 SSD – What Do We Know?

As mentioned, details on specifications of the Seagate Ironwolf 525 NVMe SSD are remarkably thin on the ground. Clearly, release and a formal reveal should not be too far ahead, as even a casual search online reveals that a number of European sites are listing the drive:

As it stands, there are no official datasheets for the Seagate Ironwolf 525 SSD available, but a lot of the specifications that ARE available (across all listing sites), as well as going by the Seagate model ID naming convention used in the Ironwolf 510 and Firecuda seemingly indicate the following:

  • Seagate Ironwolf 525 NVMe SSD
  • Available in 500GB, 1TB and 2TB Capacity
  • PCIe Gen 4.0 x4 Architecture
  • NVMe 1.3 (TBC)
  • 2280 M.2
  • 3D TLC NAND (96L or 176L TBC)
  • 0.98/1.0 DWPD (TBC)
  • 850/1800/3600 TBW (TBC)
  • 1.8M Hours MTBF (TBC)
  • 5 years Warranty
  • Rescue Data Recovery Services (2/3yrs TBC)

Of course, these should be taken with a huge grain of salt until a formal release is made, but even tentatively, compared against the Seagate Ironwolf 510 Gen 3 SSD, the Ironwolf 525 is much more comparable to the Firecuda 520 in architecture and almost certainly will feature the Pison E16 controller. A VERY important factor to keep in mind right now is that in Autumn 2021, there are very, VERY few PCIe Gen 4.0 equipped servers (and practically zero M.2 PCIe 4×4 equipped systems). PCIe Gen 4 upgrade cards are very gradually appearing, but this seemingly looks like it will be a much later winter 2021/2022 hardware change from the big names in NAS, SAN and custom servers. Therefore, as appealing as the Seagate Ironwolf 525 PCIe Gen 4×4 SSD sounds right now, it is worth remembering that very few server systems will be able to fully unlock its potential and if you are considering the Ironwolf 525 for a NAS/Server released before Summer 2021, then you would likely be better off opting for the current Seagate Ironwolf 510 NAS SSD which is PCIe Gen 3×4 and has incredibly high durability taken into account.

The Seagate Ironwolf 525 SSD – Price & Availability

Details regarding when this drive will be available to buy are incredibly thin on the ground. As mentioned, the low number of PCIe Gen 4.0 server systems, the continued high suitability of the Ironwolf 510 and the storage media market that is only starting to bounce back from over a year of shortages (at least!) all add up to the Seagate Ironwolf 525 not being a drive that needs to arrive in a hurry! The current PCIe Gen 4.0 favourite SSD, the Seagate Firecuda 530 and 520 still continue to support the existing PCIe4 client market in desktop and laptop forms, but for NAS (and indeed all server types) this switch is still very much ‘in progress’. Prices however seem to be a little clearer, with individual distributions sites appearing to agree on the pricing for each capacity at the moment of 500GB being €104 (€125 inc.TAX) 1TB at €173 (€208 inc.TAX) and 2TB arriving at €359 (€430 inc.TAX). Of course, these prices are subject to change, but do serve as an early guide on the pricing of the Seagate Ironwolf 525 and how that price sits with the Ironwolf 510 and Firecuda 520 that are currently available. We will keep an eye on this and update you on the Ironwolf 525 as we learn more, so stay subscribed! If you want to learn more about Seagate NVMe SSDs and how each drive in their current portfolio compares, have a look at the guide below:

Guide to Seagate SSDs HERE – 

 

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do use links to Amazon Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

 

SSD Caching On A NAS? What Is It and Should You Use It?

17 septembre 2021 à 01:17

Should you bother with SSD cache in on a NAS?

Most modern generation network attached storage NAS drives include the option of utilising SSD cache, which promises to improve file access and general system performance in a number of ways. Is by no means a new concept and has existed in one shape or form for more than a decade in modern server utilisation. However, in order to take advantage of SSD caching on your NAS, there are a number of hurdles that will often increase the price point of your ideal solution and potentially lower the capacity that you can take advantage of long-term. This leads many users into wondering whether SSD caching is anywhere near as beneficial as brands like Synology and QNAP would have you believe. So today I want to discuss what SSD caching is, who can benefit from it, who definitely won’t and hopefully help you decide whether you should consider SSD caching on your NAS.

What is SSD caching on a NAS?

The majority of NAS systems are comprised of multiple hard drives supported in a single enclosure that are combined together in efforts to increase capacity, performance and redundancy in a configuration commonly known as RAID (Redundant Array of Independent Disks). The more hard drives you have, the larger and more advantageous the RAID configurations you can create. However, these only marginally increase the performance available to you, multiplying performance on hard drives by a factor of the total number of hard drives. Ultimately, you are still using hard drives for your file system which will always pale in comparison to the performance available via solid-state drives SSD but this group of HDDs will result in higher throughput than any single hard drive. The obvious alternative of course is to replace all of the hard drives in your NAS with SSD and therefore reap the benefit of both SSD performance and RAID combination advantages. However, in practice, the main reason that no one does this is that the price point of SSD is significantly higher than hard drives and although the performance benefits would be greatly increased, the price would rise 5-10x times higher at least and the total available capacity would be significantly reduced – as general commercial and SMB SSDs currently max out at 4TB capacity, rather than the 18/20TB available in modern hard drives. NAS/Servers being fully populated with SSDs is still done though on less common setups which are highly enterprise and more commonly known as flash servers – fast but fantastically expensive!

RECOMMENDED SSDs FOR SSD Caching
SATA SSD HOME NVMe SSD BUSINESS SATA SSD BUSINESS
WD RED SA500

Available in SATA 2.5″ and mSATA

Affordable and Large Capacity Options

NAS Optimized

SEAGATE IRONWOLF 510

VERY High Durability of 1.0 DWPD

Data Recovery Services Included

Read Caching Optimized

SEAGATE IRONWOLF 110

Very High Durability

SSD Over Provisioning Ready

Data Recovery Services Included

SSD caching was designed as a hybrid storage media solution to this dilemma and involves pairing a small percentage of SSD storage space together with a larger area of hard drive storage space. Typically recommended at around 10% SSD to 90% hard drive, the NAS system will gradually learn over time which files on the total storage system are the ones being accessed most frequently. These files can range from tiny system files, indexes, thumbnails, directories and minor background data, all the way through to larger files that are in shared drives between multiple users, OS-related files that live on a central server and website files that are constantly being referenced for your domain (depending on the I/O configuration of your SSD cache). As the system constantly learns which files are the ones being constantly accessed, copies of these files are made on the area of SSD cache and in future when these files are requested by connected hardware clients, these faster-accessing copies will be targeted instead. Although this is a large oversimplification of the process, it is generally accurate. Not to be confused with tiered storage, which moves commonly accessed files to areas of SSD (not making a copy in 2 locations), SSD cache has numerous advantages and disadvantages that many users would do well to learn before embracing this storage media process. Let’s discuss this a little further, as there are multiple types of SSD cache options available from most modern brands.

Image Credit: techtarget.com

What is Read SSD Caching on a NAS?

The easiest but least beneficial type of SSD cache for a mass is read-only cache. This can be implemented with even a single SSD and much like the description above, involves the system moving copies of the most frequently accessed data onto the SSD. Read-only SSD cache on a NAS prevents editing or modifying of files that are being accessed on the area of the cache. Read-only cache is only of benefit to users who are accessing larger databases of preset data that is not often modified and although improves access to these more common files, limits the overall benefits of SSD caching in most NAS systems long term. Also known/referred to as Write-around SSD caching, this too writes data to the primary storage first instead of to the cache. This gives the SSD cache time to analyze data requests and identify the most frequently and recently used data. The SSD cache efficiently caches high priority data requests without flooding the cache with infrequently accessed data

What is Write Caching on a NAS?

Write Caching on a NAS can actually be broken down into two types. The first, Write-through SSD caching, writes simultaneously to the SSD cache area and to primary storage. The cache enables faster data retrieval, while the primary storage writes safely retains the data even if a system interruption affects the cache (eg a power failure). Write-through SSD caching does not require additional data protection for the cached data (so you can use one or more SSD in a Single/RAID 0 Config), but does increase write latency (i.e write time). The alternative is Write-back SSD caching, which writes ONLY to the SSD area first, then confirms that a block is written to the SSD cache, and the data is available for usage before writing the block to the main storage RAID array of HDDs afterwards. The method has lower latency than write-through, but if the cache loses data (i.e. critical system failure, power loss, etc) before the data writes to primary storage, that data is lost. Typical data protection solutions for write-back SSD caching are redundant SSDs or mirroring (i.e. MASSIVELY recommended or enforced that SSDs in a Write Through config are in a RAID 1/5 at the very least).

The application and customization of SSD caching in modern NAS software are incredibly diverse and in most cases, you can create a very bespoke SSD caching config for your system that integrates one or more caching read/write methods taht are best suited to your system setup, data types and access routines. So, now you know what SSD caching is and the types that most commonly exist, what are the advantages and disadvantages?

Guide to Seagate SSDs Guide to WD SSDs

What Are The Advantages of SSD Caching on a NAS?

The benefits of SSD caching on a NAS are often tough to measure, as the resulting improvements are the culmination of multiple smaller improvements at once. So the benefits are more often FELT than actually seen, as latency will be reduced throughout the overall access of the data on your NAS. Compressed data like thumbnails, indexing information and system reference files that a NAS will refer to in a given process will be turned around much quicker in the background and therefore will reduce wait times on instructions given by you to the NAS. Typically larger databases in scale rather than individual file volume will reap the most benefits, and therefore the advantages of SSD caching on a NAS are:

  • Faster Access to Larger databases made up for many smaller files
  • More cost-effective than an all-SSD system
  • Write-Cache/Write-Through Caching benefits more traditional one-way activity
  • Cache is largely self-managed, so once set up, will choose/drop important cached data on its own
  • The bulk of Porsume/SMB and higher NAS hardware arrive with dedicated SSD Cache bays, so no loss of traditional storage bays
  • SSD caching is becoming increasingly available on ARM-powered devices

What Are The Disadvantages of SSD Caching on a NAS?

It is very important to understand that SSD caching is not some kind of magic wand that will suddenly make your NAS significantly faster. Indeed, SSD caching will be of little to no use to the majority of home and prosumer users on a smaller scale, as larger files will rarely be moved to areas of cache and most home users will use a NAS predominantly for multimedia use, large-scale backups and surveillance in home or office environments. Not only do these processes use significantly less frequently accessed data (more likely resulting in the CREATION of new data) but as they are often more ad-hoc in nature, aside from some early write-caching, the benefits of SSD caching will be all but useless to you. Then there is the added cost, added system overhead resource use and more. Here are the main disadvantages of SSD caching on a NAS:

  • Increases Costs of your Storage Setup
  • Not all NAS M.2 NVMe SSD bays are the same bandwidth, some are capped to 1000-2000MB/s, bottlenecking some SSDs
  • Cache Data benefits are HEAVILY dependant on storage user type/files
  • Some Cache methods (i.e Write-Back) store data in the cache, THEN move to the system as it is written and susceptible to loss in the event of a power failure

M.2 SSD Vs SATA SSD Caching on a NAS?

As mentioned in the introduction to today’s article on SSD caching, the majority of NAS drives in the market right now support SSD caching. However, though many have adopted NVMe M2 SSD bays to allow users dedicated ports to do this, many other more affordable or smaller scale NAS hardware systems (2-Bays, ARM CPU devices, etc) still require the end-user to occupy existing traditional hard drive media bays for SSD media for caching instead. Obviously, this can be a significant disadvantage to your overall total maximum capacity when losing main storage bays to smaller capacity SSD for caching. But is there any difference in performance benefits by opting for significantly faster M2 NVMe PCIe SSDs for caching over traditional SATA SSD? Well yes and no. The data stored on the SSD cache has the potential to be delivered to the NAS physical interfaces at whatever maximum speed the SSD can output, so NVMe SSD will always technically push that data faster. Likewise, as the library of cached data and metadata is compiled in the system’s usage, its creation will be markedly faster on the NVMes than SATA SSD which is going to be advantageous to numerous types of write-caching. However, if you are only utilising one or more gigabit ethernet connections, then the difference felt by the end-users when read-write caching is applied between either SSD media type will be practically unnoticeable. Therefore the noticeable differences between SATA SSD and M2 NVMe SSD caching only really apply to use us who take advantage of a larger external network interface or are running larger database operations inside the NAS architecture, containers and virtual machines. 

RECOMMENDED SSDs FOR SSD Caching
SATA SSD HOME NVMe SSD BUSINESS SATA SSD BUSINESS
WD RED SA500

Available in SATA 2.5″ and mSATA

Affordable and Large Capacity Options

NAS Optimized

SEAGATE IRONWOLF 510

VERY High Durability of 1.0 DWPD

Data Recovery Services Included

Read Caching Optimized

SEAGATE IRONWOLF 110

Very High Durability

SSD Over Provisioning Ready

Data Recovery Services Included

It is also worth remembering that despite many NAS systems releasing with NVMe SSD bays, their architecture might not have sufficient PCIe lanes on the CPU and assigned chipset to allow maximum NVMe SSD performance. In short, not all NVMe slots are created equal and although you may purchase a 3000-4000MB per second SSD for your NAS and its caching, don’t be surprised if that PCIe m.2 physical revision caps your performance much lower (I strip-down of the hardware inside most home/prosumer NAS systems like the DS920+, TS-473A or Lockerstor 4 will show that the M.2 NVMe slots inside can only reach 1000-2000MB/s at most as they are PCIe 2×2, PCIe 2×4 or PCIe 3×2. In short, NVMe SSD slots for caching are a good thing and can certainly provide better performance over SATA SSD in a number of ways, just be aware that sometimes the way you use it or the hardware of the NAS itself will potentially limit this.

 

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do use links to Amazon Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

 

❌