Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

CWWK M8 N150/N355 10Gbe NAS Board Combo Review

Par : Rob Andrews
1 août 2025 à 18:00

CWWK M8 MITX 10GbE NAS Motherboard & CPU Review

The CWWK M8 NAS motherboard, equipped with either the Intel Twin Lake N150 or N355 processor, is a compact Mini-ITX platform aimed at advanced home NAS builders and small office users looking for a cost-effective alternative to branded NAS systems. Measuring just 17 x 17 cm, it combines several high-end features such as an onboard 10GbE RJ45 LAN (via the AQC113C controller), dual 2.5GbE Intel i226-V ports, and support for up to eight SATA drives through dual SFF-8643 ports. The board also integrates two M.2 NVMe slots, a DDR5 SO-DIMM memory slot supporting up to 48GB, and a PCIe Gen3 x1 slot for modest expansion. Unlike many low-power ITX boards, the M8 includes support for Wake-on-LAN, PXE boot, and hardware monitoring, which makes it a viable candidate for 24/7 operations and remote deployment scenarios. With its efficient lane distribution—critical for balancing 10GbE, NVMe, SATA, and PCIe simultaneously—it delivers a level of I/O flexibility not commonly found at this price point, particularly in the sub-$300 range.

CWWK M8 10GbE NAS Mobo – Quick Conclusion

The CWWK M8 NAS motherboard strikes a practical balance between performance, expandability, and power efficiency, making it a compelling choice for DIY NAS builders looking for 10GbE capability without the complexity or cost of larger platforms. With support for up to eight SATA drives via dual SFF-8643 connectors, dual NVMe slots, and a DDR5 SO-DIMM socket (up to 48GB), it delivers a surprising level of storage flexibility in a compact Mini-ITX form factor. Performance across the 10GbE port is strong—achieving near-saturation read speeds and respectable write throughput—while NVMe and SATA access remain consistent thanks to a careful PCIe lane allocation strategy. Power draw remains modest, even when fully populated with drives and expansion cards, reinforcing its suitability for 24/7 deployments. However, limitations like Gen3 x1 NVMe speeds, a single RAM slot, and shared PCIe/E-Key lane usage should be considered by those seeking maximum expansion or high-end performance. Still, for its price, pre-installed CPU, and strong open-source OS compatibility, the M8 offers an unusually capable base for home servers, backup targets, or even Plex and Proxmox environments.

BUILD QUALITY - 9/10
HARDWARE - 9/10
PERFORMANCE - 7/10
PRICE - 10/10
VALUE - 10/10


9.0
PROS
👍🏻10GbE RJ45 port (AQC113C) with full Gen3 x2 bandwidth
👍🏻Dual 2.5GbE Intel i226-V ports with wide OS compatibility
👍🏻Supports up to 8 SATA drives via dual independent SFF-8643 ports
👍🏻Includes 2× M.2 NVMe 2280 slots, suitable for cache or boot use
👍🏻Very low power draw (~20W under load with 10g+2xM.2, ~31W idle fully populated with HDDs)
👍🏻Compact Mini-ITX form factor with well-organized layout
👍🏻Exceptional Price vs H/W Level
👍🏻Broad OS support (TrueNAS, Unraid, PVE, Linux, Windows, etc.)
CONS
👎🏻PCIe slot and M.2 E-Key share a lane—only one usable at a time
👎🏻M.2 NVMe slots limited to PCIe Gen3 x1 speeds
👎🏻Single DDR5 SO-DIMM slot (no dual-channel support)

Where to Buy?
  • CWWK M8 10GbE NAS Board on Amazon (£174) HERE
  • CWWK M8 10GbE NAS Board on AliExpress ($166) HERE
  • N355 CWWK NAS Motherboard on AliExpress ($249) – HERE

CWWK M8 10GbE NAS Mobo – Design

The physical design of the CWWK M8 motherboard is centered around the Mini-ITX standard, maintaining a compact 17 x 17 cm footprint that caters to space-conscious NAS builds. Despite its small form factor, the layout is methodically structured to maximize accessibility and airflow. Key components such as the dual SFF-8643 ports, NVMe slots, and RAM socket are positioned for easy cable routing and minimal overlap.

The CPU arrives pre-installed with a low-profile ball-bearing cooler, which is sufficient for the low 6W TDP of the N150 processor. There’s also a system fan header onboard with PWM support, allowing for basic thermal management in enclosed NAS chassis. The board is finished in a neutral white PCB, aligning with recent CWWK trends that blend aesthetic minimalism with function-first engineering.

Storage expansion is one of the most defining elements of the M8. It features dual SFF-8643 ports that, with breakout cables, provide connectivity for up to eight SATA III (6Gbps) drives.

These connectors are routed through independent ASM1164 controllers, each on a dedicated PCIe Gen3 x1 lane, ensuring that drive traffic is not bottlenecked through a single controller.

This separation also means users can confidently deploy SSDs or mixed SSD/HDD arrays without major performance drops under load. The board supports RAID configurations at the OS level via TrueNAS or Unraid, and is capable of delivering reliable throughput for multi-drive setups including RAID-Z, RAID5, or JBOD.

In addition to traditional SATA storage, the board includes two M.2 NVMe 2280 slots, each operating at PCIe Gen3 x1. While this limits peak performance to around 900MB/s per slot, it is sufficient for cache drives or SSD-based boot volumes, especially in NAS environments where latency and parallel IOPS matter more than raw sequential throughput. The placement of the NVMe slots, one top-side and one underside, helps distribute heat and gives builders flexibility in cooling strategy. Both slots are directly accessible, and installation doesn’t require removing other components, which is particularly useful during upgrades or replacements.

Storage scaling is enhanced through the modularity of the board’s SFF-8643 interfaces. As discussed in your review, these ports can be adapted not just to standard SATA breakouts but also to additional M.2 or U.2 devices with the correct adapter cards. This creates potential for hybrid NAS setups—using SATA for bulk data storage and NVMe for hot data or VM usage. Such versatility in drive mapping is rarely offered at this price point, and makes the board viable not only for home media servers but also for lab environments or light virtualized storage nodes.

One lesser-known but practical addition is the inclusion of a MicroSD (TF) slot on the PCB. While it’s not ideal for installing major OS platforms like TrueNAS Core, it can be useful for loading bootloaders such as Unraid or for system config backups. Importantly, the TF slot is recognized natively by most operating systems and appears as a usable storage device without requiring extra drivers. It also enables simple out-of-band recovery or local snapshot scripts in more advanced workflows. Combined with the available internal USB port, the board allows multiple low-impact boot or recovery paths to coexist alongside primary storage deployments.

CWWK M8 10GbE NAS Mobo – Ports and Connections

The CWWK M8 motherboard is equipped with a well-rounded selection of external and internal I/O ports that support a broad range of NAS and server use cases. Most notably, it includes one 10GbE RJ45 port powered by the AQC113C controller and two additional 2.5GbE ports via Intel i226-V chips.

These networking options allow the board to operate in multiple roles simultaneously, such as high-speed file sharing over 10GbE while maintaining service management or redundancy via the dual 2.5GbE ports. The inclusion of Intel network controllers ensures wide compatibility with open-source operating systems like TrueNAS and Unraid, as well as ESXi and PVE, making it a suitable base for software-defined networks, VLAN tagging, or bonded interface configurations.

On the USB front, the M8 provides a combination of high-speed and legacy options. It includes 1× USB Type-C (10Gbps) and 1× USB 3.2 Gen2 Type-A (10Gbps) ports for external storage or fast USB peripherals. There are also 2× USB 2.0 Type-A ports located at the rear I/O and an internal USB 2.0 header, which is useful for OS boot drives such as Unraid.

Internally, the board also features a USB 3.0 header and a Type-E header, allowing front-panel USB 3.x support if the chassis includes such connectors. These ports give builders the flexibility to attach boot media, backup targets, or even USB-based UPS management tools without additional hardware.

For video output and direct display use, the M8 includes 1× HDMI 2.0 and 1× DisplayPort 1.4, both capable of 4K@60Hz output. These are connected via the integrated UHD graphics included with the N150/N355 CPU. While these outputs are generally not essential in a headless NAS environment, they provide value in cases where the system is used as a hybrid HTPC/NAS, or when diagnostics and BIOS access are needed without SSH or remote management tools. The GPU is also supported for hardware video decoding, making the board a viable base for light Plex or Jellyfin deployments that rely on integrated graphics acceleration.

Internally, the board features several headers that further expand its flexibility. Alongside the previously mentioned USB and fan headers, there’s an M.2 E-Key slot for wireless modules, which shares PCIe lanes with the x1 PCIe slot and cannot be used simultaneously. The board also includes an SD card (TF) slot which appears natively in supported OSes—suitable for bootloaders or small backup tasks.

While not suited to high-throughput use, it does provide an alternative storage option in embedded or recovery scenarios. The arrangement and accessibility of these ports are well considered for such a small form factor, ensuring that builders can access almost all essential functionality without relying on riser boards or USB hubs.

Interface Type Details
Ethernet Ports 1× 10GbE RJ45 (AQC113C), 2× 2.5GbE RJ45 (Intel i226-V)
USB Ports (Rear) 1× USB 3.2 Gen2 Type-A (10Gbps), 1× USB-C (10Gbps), 2× USB 2.0 Type-A
USB Ports (Internal) 1× USB 2.0 (boot drive), 1× USB 3.0 header, 1× USB 3.0 Type-E header
Display Outputs 1× HDMI 2.0, 1× DisplayPort 1.4 (both support 4K@60Hz)
PCIe Slot 1× PCIe Gen3 x1 (x4/x8 slot compatible, shared with M.2 E-Key)
M.2 Slots 2× M.2 2280 NVMe (PCIe Gen3 x1), 1× M.2 E-Key for WiFi/BT
SD Card Slot 1× TF (MicroSD) slot (appears as storage device)
Fan and Headers 1× PWM fan header, various USB/F_USB headers for front I/O

CWWK M8 10GbE NAS Mobo – Internal Hardware

At the heart of the M8 motherboard lies a choice between two Intel Twin Lake processors: the N150 and the N355. The N150 is a quad-core, four-thread CPU with a base architecture derived from the Alder Lake-N family, running at up to 3.6GHz and featuring a modest 6MB cache. It operates at a remarkably low TDP of 6W, making it suitable for passive or semi-passive cooling environments.

The N355, on the other hand, doubles the thread count and bumps performance further, albeit at a slightly higher price. Both CPUs are pre-soldered to the board and arrive with a compact, ball-bearing fan assembly that supports quiet, efficient cooling. These processors are not meant for heavy computation but offer enough power for file server duties, light containerization, and even modest Plex media serving—with the N150 proving capable of 4K playback in testing.

Memory support is handled via a single DDR5 SO-DIMM slot, officially supporting up to 48GB at 4800MHz. While dual-channel operation is not available, DDR5’s higher base bandwidth helps compensate for this limitation in real-world usage. The board accepts standard non-ECC modules and will clock down any faster memory to the platform’s 4800MHz limit.

For NAS and virtualization users, this constraint is acceptable, though power users may note that memory upgrades are capped to a single slot. That said, 32GB or 48GB configurations are more than adequate for common use cases like running TrueNAS Scale with Docker containers, or spinning up a few VMs in Proxmox.

The board’s PCIe lane distribution is particularly deliberate given the constraints of the Twin Lake architecture, which provides just 9 usable PCIe lanes. Despite this, the M8 balances connectivity by allocating PCIe Gen3 x2 bandwidth to the 10GbE port, ensuring full 10Gbps throughput with bandwidth overhead. The SATA controllers each receive dedicated PCIe Gen3 x1 lanes, and each M.2 NVMe slot is similarly mapped at x1 speed.

The remaining lane is shared between the M.2 E-key (for Wi-Fi/BT modules) and the physical PCIe x1 expansion slot. This means that users must choose between Wi-Fi upgrades or additional PCIe peripherals—a typical tradeoff on ITX boards, but worth noting during build planning.

From a system management perspective, the board supports UEFI-only boot modes and includes features such as Auto Power-On, Scheduled Power-On, PXE boot, Wake-on-LAN, and Secure Boot, making it suitable for remote deployment or integration into managed environments. The board includes thermal monitoring via BIOS and OS-level tools, with fan control limited to one system fan header supporting PWM. These features, while basic, are sufficient for home server use or edge deployment in micro data centers. The compact ITX layout also makes the board a candidate for embedded use in custom NAS chassis or OEM enclosures with constrained airflow or proprietary mounting.

Component Details
CPU Options Intel N150 (4C/4T, 3.6GHz, 6W TDP), Intel N355 (8C/8T, higher performance)
Memory 1x DDR5 SO-DIMM, up to 48GB (4800MHz), non-ECC
Chipset/Lanes Intel Twin Lake SoC, 9 PCIe Gen3 lanes total
NVMe Storage 2x M.2 2280 NVMe (PCIe Gen3 x1 each)
SATA Support 2x SFF-8643 (8x SATA III via breakout cables, each on ASM1164 controller)
PCIe Expansion 1x PCIe Gen3 x1 slot (shared with M.2 E-Key)
WiFi Module Slot 1x M.2 E-Key (2230) for Wi-Fi/BT (shares lane with PCIe slot)
Boot Features UEFI-only, Auto Power-On, Wake-on-LAN, PXE boot, Secure Boot
Fan Support 1x PWM system fan header, bundled CPU fan

CWWK M8 10GbE NAS Mobo – Performance and Power Tests

During benchmarking and real-world tests, the N150-based M8 motherboard demonstrated performance levels consistent with expectations for an ultra-low-power NAS platform. Sequential read speeds over the 10GbE interface approached saturation during synthetic ATTO Disk Benchmark tests, particularly with a 256MB block size, where throughput consistently exceeded 950MB/s.

Write performance, however, plateaued slightly lower, averaging between 650–700MB/s for 1GB and 4GB file tests. These figures are typical for systems utilizing Gen3 x1 NVMe SSDs and efficiency-focused CPUs like the N150, where write-intensive operations are more limited by CPU capability than disk throughput. Larger transfers or workloads involving compression will see slightly more variation, but in most scenarios, read performance remained stable and consistent.

Using a RAID 1 array of Seagate IronWolf drives connected via the dual SFF-8643 SATA ports, the board achieved average write speeds of 550–580MB/s, with occasional peaks in read performance reaching up to 800MB/s, though these were not sustained.

These results reflect the benefit of having each SATA group routed through a separate ASM1164 controller, ensuring that bandwidth isn’t choked under RAID configurations or multi-drive reads. In practical terms, this makes the board well-suited for file-serving tasks, Time Machine backups, or media library hosting, with no obvious contention across interfaces during simultaneous read/write operations.

NVMe performance was constrained by the PCIe Gen3 x1 link per M.2 slot, which limited theoretical throughput to under 1GB/s. Tests confirmed read speeds of around 720MB/s and write speeds of approximately 520MB/s in sustained transfers. While not ideal for high-performance VM storage or video editing scratch disks, these speeds are more than adequate for cache duties or container storage. Importantly, the board maintains predictable performance across both NVMe slots, and thermals were manageable under active load without throttling, thanks in part to the pre-attached CPU cooler and accessible airflow pathways on the board’s surface.

In terms of power efficiency, the system consumed approximately 19–20W under load when configured with the N150 CPU, 8GB of DDR5, two NVMe SSDs, and a 10GbE connection in active use. When idle but fully populated with four SATA drives and an expansion card installed (but unused), power draw settled at around 31.4W. This confirms the board’s suitability for 24/7 operation without requiring high-capacity PSUs or custom thermal management.

For edge computing, offsite backup, or low-power homelab deployments, this balance of power efficiency and consistent I/O throughput is a key strength of the M8.
Test Category Result (N150 Model)
10GbE Read (ATTO, 256MB) ~950MB/s (near saturation)
10GbE Write (1–4GB) ~650–700MB/s
RAID 1 HDD (SATA) Write: 550–580MB/s, Read Peak: up to 800MB/s (occasional spikes)
NVMe (Gen3 x1) Read: ~720MB/s, Write: ~520MB/s
Power Draw (Load) ~19–20W (N150, 2× NVMe, 10GbE active)
Power Draw (Idle, full config) ~31.4W (4× HDD, PCIe card, NVMe, no I/O)
Thermals Stable under load; no active throttling observed

CWWK M8 10GbE NAS Mobo – Verdict and Conclusion

The CWWK M8 motherboard delivers a rare combination of high-speed networking, broad storage expandability, and low power consumption, all within a Mini-ITX footprint. It manages to balance PCIe lane allocation across 10GbE, dual NVMe, and eight SATA drives without compromising basic performance, thanks to deliberate hardware pairing and thoughtful board layout. The use of separate SATA controllers, a well-provisioned 10GbE controller on Gen3 x2 lanes, and native UEFI support reflects a clear intent to make this a serious option for NAS enthusiasts and advanced home users. Its ability to sustain near-saturation speeds on the 10GbE connection and provide usable NVMe throughput makes it a capable base for TrueNAS, Unraid, or Proxmox environments—whether for home backup, Plex media hosting, or light VM workloads.

However, there are trade-offs. The limited PCIe expandability, single RAM slot, and Gen3 x1 constraints on NVMe performance may not meet the needs of high-end workstation builders or enterprise deployments. Additionally, the shared PCIe lane between the M.2 E-key and the PCIe slot limits simultaneous use of both interfaces, which could affect those hoping to add both Wi-Fi and a PCIe peripheral. Still, for its price point and target use case, the M8 delivers well above average. It avoids many of the bottlenecks seen in competing low-power boards and manages to do so at under $300 with a pre-installed CPU. For users building a power-efficient, high-bandwidth DIY NAS with flexible drive options and capable base specs, the CWWK M8 stands out as a strong contender.

 

Where to Buy?
  • CWWK M8 10GbE NAS Board on Amazon (£174) HERE
  • CWWK M8 10GbE NAS Board on AliExpress ($166) HERE
  • N355 CWWK NAS Motherboard on AliExpress ($249) – HERE

Pros Cons
10GbE RJ45 port (AQC113C) with full Gen3 x2 bandwidth PCIe slot and M.2 E-Key share a lane—only one usable at a time
Dual 2.5GbE Intel i226-V ports with wide OS compatibility M.2 NVMe slots limited to PCIe Gen3 x1 speeds
Supports up to 8 SATA drives via dual independent SFF-8643 ports Single DDR5 SO-DIMM slot (no dual-channel support)
Includes 2× M.2 NVMe 2280 slots, suitable for cache or boot use
Very low power draw (~20W under load, ~31W idle fully populated)
Compact Mini-ITX form factor with well-organized layout
Pre-installed CPU and active cooling fan included
Broad OS support (TrueNAS, Unraid, PVE, Linux, Windows, etc.)

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

CWWK N355 10×2 NAS/Router Box Review

Par : Rob Andrews
6 juin 2025 à 18:00

Is the CWWK N355 Soft Router Firewall / NAS Box Worth Your Data? (Review)

DIY router boxes have gained popularity in recent years, especially those coming out of China with various hardware configurations. The CWWK N355-powered firewall appliance is an intriguing option, not just as a high-performance router but also as a potential NAS device. Unlike many reviews that focus on its networking capabilities, this review explores its viability as a compact and efficient NAS solution.

CWWK N355 DIY 10GbE Router/NAS Review – Quick Conclusion

The CWWK N355 is a well-rounded and versatile device that excels in networking, virtualization, and compact NAS applications, thanks to its dual 10GbE SFP+ ports, 2.5GbE LAN, expandable DDR5 RAM, and M.2 NVMe storage support. It is a compelling choice for firewall applications, Proxmox virtualization, and even lightweight NAS or media server setups, offering a balance of performance and connectivity in a compact and durable metal chassis with active cooling. The Alder Lake-N N355 CPU delivers efficient multi-core performance, making it suitable for running multiple services, including Docker containers, VMs, and network security applications. Additionally, its expandable memory and storage options give users flexibility, though its storage implementation is somewhat restrictive due to only one native NVMe slot and a SATA port with no internal mounting space. However, its aging Intel 82599ES 10GbE controller, high idle power consumption of 21-22W, and lack of full-speed PCIe lanes limit its potential for high-performance NAS deployments. While it can handle moderate file-sharing and media streaming workloads, users who require full 10GbE speeds, extensive storage expansion, and power efficiency may find better options in dedicated NAS motherboards with PCIe slots or higher-efficiency processors. Still, for those looking for a compact, high-speed network appliance with strong customization potential, the CWWK N355 remains a solid choice for advanced home labs, small business networking, and hybrid router-NAS setups. As long as users are aware of its networking bottlenecks and storage limitations, it offers impressive versatility and performance at an attractive price point.

BUILD QUALITY - 8/10
HARDWARE - 8/10
PERFORMANCE - 7/10
PRICE - 10/10
VALUE - 10/10


8.6
PROS
👍🏻High-Speed Networking: Equipped with dual 10GbE SFP+ ports and two 2.5GbE LAN ports, providing excellent connectivity for advanced networking setups.
👍🏻Expandable Storage: Features two M.2 NVMe slots (one requiring an adapter) and a SATA 3.0 port, allowing for versatile storage configurations.
👍🏻Efficient Alder Lake-N CPU: The Intel N355 (8C/8T, up to 3.8GHz) offers efficient performance for firewall applications, Proxmox, lightweight NAS, and media servers.
👍🏻DDR5 Memory Support: Supports up to 48GB DDR5 RAM, enabling smooth multitasking, virtualization, and Docker/containerized environments.
👍🏻Robust Build and Cooling: Full aluminum chassis acts as a heat sink, with a top-mounted active cooling fan for effective thermal management.
👍🏻Wide OS Compatibility: Works with Windows 11 Pro, Linux distributions, ESXi, OPNsense, pfSense, OpenWrt, and TrueNAS, making it highly flexible.
👍🏻Compact and Power-Efficient: Small form factor and 15W TDP CPU make it space-saving and relatively low-power compared to traditional rack-mounted alternatives.
CONS
👎🏻Aging 10GbE Controller: The Intel 82599ES 10GbE chipset is outdated, limiting maximum network speeds and performance efficiency in high-bandwidth workloads.
👎🏻Limited SATA Storage Options: While it includes a SATA 3.0 port, there is no internal mounting space for a 2.5-inch drive, requiring external solutions.
👎🏻Higher Idle Power Draw: Consumes 21-22W at idle, which is higher than dedicated NAS devices, potentially affecting long-term energy costs.


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤

Where to Buy?
  • CWWK N355 2x10GbE Box Router/NAS ($304 AliExpress) – HERE
  • CWWK N355 2x10GbE Firewall Box U.S ($460 Amazon) – HERE
  • CWWK N355 2x10GbE Firewall Box U.K (£304 Amazon) – HERE
  • CWWK N355 MITX NVMe NAS ($184-295 AliExpress) – HERE
  • DIY N355 NAS Products ($254-349 Amazon) – HERE

The CWWK N355 features a robust industrial design, with an all-metal chassis that acts as a heat sink, efficiently dissipating heat from critical components. The exterior is entirely metal, including the base panel, which features mesh ventilation to enhance airflow. A top-mounted active cooling fan ensures consistent airflow across the CPU and networking components, preventing thermal throttling under sustained workloads.

Internally, copper heat plates are placed over the CPU and 10GbE controllers, allowing for direct heat transfer to the chassis. This cooling system is highly effective, maintaining temperatures within safe limits even under heavy network and storage loads. During testing, the device remained at an average of 50-55°C under full load, with the fan producing minimal noise.

The cooling implementation makes the CWWK N355 a viable option for extended use in high-performance NAS, virtualization, or firewall applications where thermal efficiency is crucial. Given its mix of powerful networking features, ample connectivity, and storage options, this device has the potential to serve a broader range of applications than just routing. However, evaluating its strengths and weaknesses is crucial before repurposing it for a NAS setup.

One of the standout features of the CWWK N355 is its impressive network connectivity. Equipped with dual 10GbE SFP+ ports and two 2.5GbE i226V LAN ports, it offers significantly more bandwidth than traditional consumer NAS devices.

These high-speed connections enable rapid file transfers, efficient virtualization networking, and multi-user simultaneous access without bottlenecks.

It also includes two M.2 NVMe slots and a SATA 3.0 port, making it highly flexible for storage configurations. This means users can integrate fast NVMe storage while still having the option to include traditional SATA drives for cost-effective capacity expansion.

The aluminum chassis with active cooling enhances its thermal efficiency, ensuring stable operation even under load, a crucial aspect for maintaining performance in continuous 24/7 operation.

The N355 CPU, an Alder Lake-N processor, brings 8 cores and 8 threads, with a base clock of 1.8GHz and a boost up to 3.8GHz. This processor is designed for efficiency while maintaining a respectable level of performance for various workloads.

It also features integrated Intel UHD graphics, which allows it to handle lightweight GPU tasks such as video decoding, remote desktop applications, and low-power graphical processing.

The DDR5 SO-DIMM slot supports up to 48GB RAM, although some listings mention 32GB as the maximum. This expanded memory capacity is particularly beneficial for virtualization, allowing users to run multiple lightweight VMs, containers, and even a Plex media server with modest hardware-accelerated transcoding capabilities.

Component Specification
Processor Intel Alder Lake-N N355, 8 Cores / 8 Threads, 1.8GHz base, 3.8GHz boost
Graphics Integrated Intel UHD Graphics
Memory 1 x DDR5 SO-DIMM slot, up to 48GB (some listings state 32GB max)
Storage 2 x M.2 NVMe (one requires adapter), 1 x SATA 3.0 (no internal mounting)
Networking 2 x 10GbE SFP+, 2 x 2.5GbE i226V LAN
Power Consumption 21-22W idle, up to 36W under load
Cooling Aluminum chassis with active cooling fan
Ports 1 x Type-C, 1 x USB 3.2, 4 x USB 2.0, 2 x HDMI 2.0, TF Card Slot
Operating System Support Windows 11 Pro, OPNsense, Linux, ESXi, OpenWrt
Dimensions 12.7 x 17.8 x 5.5 cm
Weight 1.3 kg

The combination of efficient CPU performance and expandable RAM makes it versatile, but users should be aware of its limitations when handling resource-intensive applications.

However, storage expansion comes with some challenges. While the device technically supports two M.2 NVMe drives, only one slot is a standard 2280 interface. The second slot requires an adapter, which is included, but adds complexity to installation. This additional requirement may be a concern for users who are less experienced with hardware modifications or prefer simpler plug-and-play configurations.

The SATA drive support is somewhat limited—while the port is available, there is no dedicated internal space for mounting a 2.5-inch drive inside the enclosure, meaning external mounting is necessary. This lack of internal SATA mounting may be a dealbreaker for those who prefer a more integrated and clutter-free build. While external enclosures or adapters could be used to house SATA drives, it introduces additional complexity and potential cable management issues.

Power consumption is another area of concern. Under idle conditions, the device draws 21-22W, which is quite high compared to traditional NAS appliances. Many consumer NAS systems are designed to run efficiently at around 10W to 15W when idle, making this unit significantly more power-hungry when not under load.

Under load, with 10GbE connections active, VMs running, and storage drives in use, power consumption reaches 36W. While this is still within reasonable limits for a device offering high-speed networking and multi-core processing, it is something to consider for users prioritizing energy efficiency. Over time, the additional power draw may add up, especially for those running multiple devices in a home or small business setup. If power efficiency is a critical factor, other lower-power options might be preferable.

Performance-wise, the M.2 NVMe drives achieve read speeds of up to 720MB/s and write speeds of 690MB/s.

While SATA performance peaks at around 200MB/s with a standard HDD. These speeds are respectable but fall short of fully utilizing the available 10GbE networking potential.

While this is acceptable for most home NAS applications, the 82599ES 10GbE controller is a notable bottleneck. It is an older PCIe Gen2 x4-based controller (in this deployment at least), which limits full 10GbE speeds.

In testing, even with dual 10GbE connections active, network transfers maxed out at around 600-700Mbps per link, rather than saturating the full 10GbE bandwidth on each of them.

This suggests that while it is capable of handling high-speed transfers, it is not the ideal choice for users who need to maximize 10GbE connectivity for large-scale data transfers or enterprise workloads.

While the CWWK N355 offers excellent networking and processing power, its relatively aging 10GbE controller, high idle power consumption, and limited internal storage space make it less ideal for an all-purpose NAS. However, it excels as a high-performance firewall/router, Proxmox host, or Plex server for users who can work around these limitations.

Users interested in setting up an advanced home lab or small business server might find this device appealing due to its networking flexibility, processing capability, and virtualization potential. While it lacks native software optimization found in dedicated NAS brands, those comfortable with manual setup and open-source NAS software will find it a capable and adaptable device.

For those seeking a dedicated NAS solution with full 10GbE performance, an ITX motherboard with PCIe 3.0 slots and dedicated storage expansion might be a better alternative. Such options would provide greater flexibility for storage expansion, more efficient networking solutions, and overall better optimization for NAS workloads. But if you’re looking for a compact, all-in-one networking and storage device, the CWWK N355 is an impressive contender.

Just be mindful of the legacy components and potential bottlenecks before making your final decision. With the right configuration and expectations, it can serve as a cost-effective and powerful addition to a home lab or small business network setup.

PROs of the CWWK N355 DIY 10GbE Box CONs of the CWWK N355 DIY 10GbE Box
  • High-Speed Networking: Equipped with dual 10GbE SFP+ ports and two 2.5GbE LAN ports, providing excellent connectivity for advanced networking setups.

  • Expandable Storage: Features two M.2 NVMe slots (one requiring an adapter) and a SATA 3.0 port, allowing for versatile storage configurations.

  • Efficient Alder Lake-N CPU: The Intel N355 (8C/8T, up to 3.8GHz) offers efficient performance for firewall applications, Proxmox, lightweight NAS, and media servers.

  • DDR5 Memory Support: Supports up to 48GB DDR5 RAM, enabling smooth multitasking, virtualization, and Docker/containerized environments.

  • Robust Build and Cooling: Full aluminum chassis acts as a heat sink, with a top-mounted active cooling fan for effective thermal management.

  • Wide OS Compatibility: Works with Windows 11 Pro, Linux distributions, ESXi, OPNsense, pfSense, OpenWrt, and TrueNAS, making it highly flexible.

  • Compact and Power-Efficient: Small form factor and 15W TDP CPU make it space-saving and relatively low-power compared to traditional rack-mounted alternatives.

  • Aging 10GbE Controller: The Intel 82599ES 10GbE chipset is outdated, limiting maximum network speeds and performance efficiency in high-bandwidth workloads.

  • Limited SATA Storage Options: While it includes a SATA 3.0 port, there is no internal mounting space for a 2.5-inch drive, requiring external solutions.

  • Higher Idle Power Draw: Consumes 21-22W at idle, which is higher than dedicated NAS devices, potentially affecting long-term energy costs.

 

Where to Buy?
  • CWWK N355 2x10GbE Box Router/NAS ($304 AliExpress) – HERE
  • CWWK N355 2x10GbE Firewall Box U.S ($460 Amazon) – HERE
  • CWWK N355 2x10GbE Firewall Box U.K (£304 Amazon) – HERE
  • CWWK N355 MITX NVMe NAS ($184-295 AliExpress) – HERE
  • DIY N355 NAS Products ($254-349 Amazon) – HERE

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

I Visited a Chinese NAS Factory – And Here is What I Saw…

Par : Rob Andrews
7 avril 2025 à 18:00

Visiting a NAS Production Facility in Shenzhen, China – The CWWK Factory and Office Tour

As part of a broader effort to explore the landscape of Chinese tech manufacturers, I recently visited the facilities of CWWK (ChangWang) in Shenzhen, China. CWWK is best known in enthusiast circles for producing NAS motherboards and compact computing solutions, often associated with budget-friendly, DIY network storage builds. My visit aimed to independently assess the scope and structure of their operations. What made this particular tour notable was the access I was granted: no NDAs were signed, there were no editorial restrictions placed on what I could film or ask, and I was permitted to record freely inside their production and R&D spaces.

This is uncommon, particularly in the tech hardware space, where many brands—especially in Asia—are typically guarded about internal processes, even when media are invited. The open format allowed for a more thorough and independent evaluation, without needing to speculate based on secondhand reports or promotional material.

It’s important to contextualize how the visit came about. CWWK did not arrange or sponsor my trip to China in any way. I was in the region for a series of self-funded visits to multiple tech companies, looking to gain a clearer understanding of how various hardware brands operate behind the scenes. The idea was to go beyond spec sheets and product listings and see what real infrastructure, if any, stood behind companies whose products are often marketed under many different brand names on platforms like AliExpress, Amazon, and Alibaba.

I reached out to CWWK on short notice—roughly 10 to 14 days prior—and they agreed to the visit. The fact that they were able to accommodate the tour with minimal lead time is worth noting. It doesn’t rule out the possibility of some presentation enhancements being made in preparation, but it does suggest that the company was not reliant on elaborate staging to present a working production environment.

The first location I visited was a mixed-use building that included administrative offices, logistics personnel, and access to part of the factory floor. Externally, the building bore no clear CWWK branding, which initially raised questions about ownership or exclusivity. Inside, however, the picture was more cohesive: staff wore uniforms bearing CWWK logos, and product runs on the factory floor featured motherboards that matched CWWK’s catalog.

While I wasn’t given lease documentation or corporate records, the volume of CWWK-branded activity suggested the company either occupies a substantial portion of the facility or has secured long-term, semi-exclusive use of the space. Several floors were accessible, and the presence of both production and support teams indicated that this was more than a satellite or temporary operation. Even so, it’s likely this building is part of a larger industrial complex shared with other tenants, which is common practice in Shenzhen’s manufacturing zones.

One of the key questions I brought to the visit concerned product design and IP ownership—specifically, whether CWWK truly engineers its own hardware or rebrands ODM (original design manufacturer) platforms that are available generically to other companies. In a formal meeting with several members of their team, facilitated by a translator, I was told that all motherboard designs are created in-house.

The company emphasized that while many of their designs do appear under other brand names, including through known resellers or system integrators, the core engineering and schematics originate from their internal teams. Some of these designs, they explained, are distributed under license or through contract manufacturing relationships.

While I wasn’t shown the full design pipeline or documentation for each SKU, I was given access to product schematics, test rigs, and development areas. Based on what I observed, it’s reasonable to conclude that CWWK controls the design process and that their platforms are later distributed—often without clear attribution—by partner companies.

Technical support and warranty policies are often ambiguous when it comes to imported tech from overseas sellers, so I took the opportunity to ask about their post-sales procedures. According to CWWK staff, customers who purchase through major e-commerce channels like AliExpress and Alibaba are serviced directly by the company’s internal support team. This contradicts the assumption that resellers handle all inquiries. They described a standard one-year warranty policy, during which defective products are repaired where feasible rather than replaced outright.

While this approach may not satisfy buyers expecting instant replacements, it aligns with broader industry trends aimed at reducing e-waste and extending hardware lifespans. I observed a dedicated support office where staff were responding to issues, many of which involved firmware or BIOS concerns. The responses to my questions were generally clear but did follow a templated structure, which made it difficult to determine how adaptable their support might be in complex cases.

Moving onto the factory floor, I was able to observe multiple stages of the production workflow. The environment combined automated processes—such as SMT (surface mount technology) component placement and soldering—with manual checkpoints, where staff would verify board integrity, inspect connector alignment, and move products between stations. The factory space showed signs of active use: floor scuffing, desk wear, and tooling marks suggested long-term operation rather than short-term setup.

Workers were equipped with anti-static wrist straps, and safety protocols appeared to be in place, though a few inconsistencies were observed. For instance, not all staff were wearing the full lab coats or coverings that I was required to wear as a visitor. While that’s not uncommon in similar facilities, it’s worth noting in the context of manufacturing discipline. Overall, the workflow followed a logical structure, and there were observable quality checks along the line, including one instance where a misaligned port was flagged and redirected for correction.

Direct interaction with factory personnel was limited, mainly due to language barriers and the guided nature of the tour. I attempted brief conversations, but most staff were focused on their tasks and understandably uninterested in lengthy exchanges with a foreign visitor.

I did not observe any signs of distress or visible overwork, but equally, I did not have enough time or context to draw firm conclusions about working conditions. The facility walls displayed motivational signage, some of which featured quite stern phrasing around responsibility and company reputation.

These types of messages—such as “Your mistakes are our mistakes”—may reflect common workplace culture in the region rather than specific managerial attitudes. In contrast, a separate building used for research and marketing featured more aspirational language. These environmental details may offer some insight into the tone and structure of the company, although they should be interpreted cautiously.

A portion of the facility was allocated to repairs and technical diagnostics. I observed several staff members actively responding to customer-reported issues and working on returned products. Desks were equipped with diagnostic tools and some BIOS interfaces were visible on screens.

In a nearby room, technicians were repairing or reworking boards—examples included reseating CPUs, correcting poorly soldered connectors, and inspecting DIMM slots.

Although the scale of this area was not massive (around six to eight desks), it indicated an operational RMA process. I did not assess how quickly repairs are processed or whether every return is examined manually, but the team appeared to be addressing real customer issues, not simply staging activity for the tour. Staff in this area were dressed more casually than the production line workers, likely due to the nature of their tasks involving pre-owned or defective components.

The second facility, located in the Beta Industrial Park, was clearly identified as a CWWK property. Unlike the first building, this one included prominent company branding, product showcases, and internal signage referencing CWWK’s development roadmap.

The upper floors were used by the R&D and marketing teams. In a dedicated product room, I was shown nearly every motherboard they’ve developed, including legacy models and upcoming releases. Several new boards were in early development, featuring high-density SATA fan-outs via SFF-8654 and NVMe expandability.

Designs ranged from micro-ITX to mATX, with plans to scale modularly using add-on cards for storage and connectivity. I also viewed design schematics and 3D renderings used to plan component layout and case compatibility. CWWK is working on 10GbE-capable models using newer Intel and AMD platforms, including boards with ECC memory support and USB4 integration. While I was not permitted to document everything in detail, the scope and clarity of the development process suggested an active, technically capable engineering team.

After spending a full day across both facilities, my overall impression of CWWK was that of a mid-sized but competent hardware developer with a growing international presence. While the first building’s exact ownership remains somewhat ambiguous, the second building was clearly operated and branded by CWWK, housing their product, development, and marketing teams. More significantly, based on my observations and the responses given, it is clear that CWWK designs and owns the intellectual property behind their motherboards.

There were also strong indications that they serve as an upstream supplier for other brands—likely including companies like Topton, MrRoute, and similar resellers often seen on Chinese e-commerce platforms. Whether these partners act as distributors, integrators, or white-label resellers wasn’t explicitly stated, but the relationship appears to exist.

CWWK is not a shell company or brand-only operation; it is a functioning developer and manufacturer of computing hardware with its own IP, infrastructure, and personnel. For buyers, this doesn’t automatically guarantee performance or support satisfaction, but it does lend some credibility and traceability to a product category often dominated by opaque supply chains and unbranded goods.

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

CWWK N355 DIY NAS Review

Par : Rob Andrews
21 mars 2025 à 18:00

CWWK N355 DIY NAS Motherboard Review

The CWWK N355 DIY NAS motherboard is a Mini-ITX board designed for users looking to build a compact yet powerful NAS system with high storage capacity and expansion potential. Featuring the Intel Twin Lake N355 processor, dual 2.5GbE networking, six SATA ports, and two NVMe slots, it balances performance and affordability. With PCIe 3.0 expansion and a power-efficient CPU, it provides a solid foundation for home lab enthusiasts and small-scale NAS builders. However, it does come with some limitations, particularly in PCIe lane allocation and component placement. This review covers design, hardware, storage, performance tests, and overall value to determine whether it’s the right choice for your next DIY NAS project.

Available in two configurations, the N150 quad-core version ($174) and the N355 octa-core version ($288), this motherboard positions itself as a budget-friendly but capable alternative to more expensive NAS solutions. While the onboard features are generous for the price, the placement of components and some design choices might limit expandability for certain users. Let’s dive deeper.

Component Details
Processor (SoC) Intel Twin Lake N355 (8 cores, 8 threads, 3.9GHz max turbo)
Memory 1x SO-DIMM DDR5 4800 MHz (up to 48GB, Non-ECC)
Storage Slots 2x M.2 NVMe PCIe 3.0 x1 (2280)
SATA Support 6x SATA3.0 ports (ASM1166 controller)
Networking 2x 2.5GbE RJ45 (Intel i226V controllers)
USB Ports 1x USB 3.0, 3x USB 2.0, 1x USB 3.0 internal header, 1x USB 2.0 internal header
Video Output 1x HDMI 2.0, 1x DP 1.4 (4K@60Hz)
Expansion 1x PCIe 3.0 x4 slot
Power Supply 24-pin ATX + 4-pin CPU power connector
BIOS Features Auto Power On, Wake-on-LAN (WoL), PXE Boot
Form Factor Mini-ITX (17 x 17 cm)

Where to Buy?
  • CWWK N355 MITX NVMe NAS ($184-295 AliExpress) – HERE
  • CWWK x86 P6 NVMe NAS Box ($160 AliExpress) – HERE
  • DIY N355 NAS Products ($254-349 Amazon) – HERE

CWWK N355 NAS Review – Quick Conclusion

The CWWK N355 DIY NAS motherboard provides a solid balance between affordability and performance, making it a strong option for NAS builders and home lab users. With six SATA ports and two NVMe slots, it offers flexible storage options, while dual 2.5GbE networking ensures decent network speeds. The PCIe 3.0 x4 slot allows for expansion, but lane allocation limitations could be a bottleneck for certain configurations. Power efficiency is excellent, and during testing, the N355 CPU handled multiple VMs, media streaming, and general NAS tasks well. However, thermal management and component placement could have been better, particularly around the PCIe and SATA ports.

Overall, the CWWK N355 is a capable Mini-ITX NAS motherboard, especially for those comfortable with DIY setups. The lack of ECC memory support, PCIe lane sharing, and close component placement are drawbacks, but for the price, it remains a versatile and well-featured board.

BUILD QUALITY - 9/10
HARDWARE - 9/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 9/10


8.8
PROS
👍🏻Compact Mini-ITX design, ideal for NAS builds
👍🏻Dual 2.5GbE ports for enhanced network performance
👍🏻Six SATA ports for ample storage expandability
👍🏻Two NVMe slots for high-speed SSD caching or storage
👍🏻Energy-efficient Intel N355 CPU with low power draw
👍🏻Good virtualization support for lightweight VMs and containers
👍🏻Strong media streaming performance, including Plex compatibility
👍🏻Affordable price point compared to similar NAS motherboards
CONS
👎🏻PCIe slot placement may block SATA ports with larger cards
👎🏻Limited PCIe lanes constrain high-speed expansion options
👎🏻No ECC memory support, which may be a concern for some user


Where to Buy a Product
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤ 
amzamexmaestrovisamaster 24Hfree delreturn VISIT RETAILER ➤


CWWK N355 NAS Review – Design

The CWWK N355 DIY NAS motherboard follows a compact Mini-ITX design, offering a good mix of functionality and space efficiency. Its 10-layer high-density PCB provides durability, while the standard ATX 24-pin power and 4-pin CPU power connectors make it easy to integrate into various NAS chassis. The purple PCB aesthetic is unique, setting it apart from many other DIY NAS motherboards. However, despite its compact build, some of the design choices create challenges when it comes to expandability.

One of the most noticeable issues is the placement of the PCIe 3.0 x4 slot in relation to the SATA ports. While the board allows for expansion cards like RAID controllers or 10GbE adapters, the proximity of the PCIe slot to the six SATA ports means that larger cards can obstruct some of the SATA connections.

This could force users to choose between additional network connectivity and full SATA drive support, which is an unfortunate trade-off. Ideally, an SFF-8087 or OCuLink alternative for SATA connectivity would have been a better approach, reducing port congestion.

The built-in cooling options are fairly basic, with a single CPU fan header and two system fan headers (only one supporting PWM). While the board is designed for low-power efficiency, adding high-performance storage or running multiple VMs may generate additional heat that requires better cooling.

The included stock CPU cooler is not ideal, as it sits too close to nearby components, making it harder to install without interfering with the SO-DIMM DDR5 memory slot. Users are advised to invest in a third-party low-profile cooler for better thermal management.

On the connectivity side, dual 2.5GbE network ports (Intel i226V) provide solid networking performance for most NAS use cases, with support for SMB Multichannel and link aggregation. The limited USB selection, however, could be a concern.

With only one USB 3.0 port and three USB 2.0 ports, users relying on external storage or bootable USB setups may find the available connections restrictive. That said, the internal USB 3.0 and USB 2.0 headers provide some additional flexibility for internal USB-based boot drives, but a few more rear-facing USB ports would have been welcome.


CWWK N355 NAS Review – Storage

Storage is a key strength of the CWWK N355 motherboard, with a combination of six SATA3 ports and two M.2 NVMe slots offering flexibility for different storage configurations. The ASM1166 SATA controller is responsible for managing the six SATA ports, providing stable performance for hard drives and SSDs. Users looking to build a NAS with high-capacity drives will appreciate the dedicated SATA expansion, which supports RAID configurations through software.

The two M.2 NVMe slots, while a welcome addition, are limited to PCIe 3.0 x1 speeds, meaning they can only reach maximum sequential throughput of around 780-800MB/s. This is a clear limitation compared to PCIe 3.0 x4 NVMe slots found in higher-end boards. However, these slots are still useful for caching or fast-access storage, especially when paired with SATA drives for bulk data storage.

During testing, a RAID 0 setup with six 4TB HDDs achieved 650MB/s sustained throughput, showing that the ASM1166 controller handles multiple drives efficiently. Performance with SATA SSDs was better, with speeds saturating the SATA3 interface at 550-560MB/s per drive. Users expecting enterprise-level speeds may find this limiting, but for general NAS applications, it performs well.

Another consideration is PCIe lane allocation. Because the ASM1166 controller operates on a PCIe 3.0 x1 interface, total throughput is shared across all six SATA ports. This means that in heavy read/write operations across multiple drives, users might encounter bottlenecks. Those planning on maximizing SATA performance should ensure efficient data distribution across drives.

Ultimately, while the storage configuration is flexible and functional, the PCIe 3.0 x1 restrictions on both NVMe and SATA controllers present some limitations. For users needing high-speed NVMe storage, a motherboard with PCIe 3.0 x4 support per NVMe slot would be preferable, but for most NAS applications, the N355 provides good storage expandability at a reasonable price.

Interestingly, when I rand 100x 1GB File tests via terminal on each of the Gen 3×1 m.2 NVMe, the numbers were pretty good (factoring in the efficient class CPU and 1 lane of Gen 3 – so was never gonna exceed 800-900MB/s anyway).

Afterwards, I wanted to check if the PCIe slot was sharing lane space with the 2nd m.2 slot (as is the case on some of the N100/N305 NAS Moos before) and I am pleased to confirm that I was able to use terminal and 100x 1GB Read on both the 2nd M.2 NVMe slot AND another m.2 NVMe on a PCIe Card mounted on via the PCIe 3×4 slot.

So I am quite happy with the data/internal bandwidth in these tests with such a modest CPU. Let’s discuss this internal hardware and performance more.


CWWK N355 NAS Review – Tests & Performance

The Intel N355 CPU offers efficient performance for NAS-related tasks, including file sharing, virtualization, and media streaming. During testing, it handled multiple VMs running concurrently, with each assigned a virtual CPU and minimal RAM. Even under load, the CPU maintained stable performance without excessive heat generation, making it suitable for users who need a lightweight but capable processing unit for home lab applications.

Network performance was another highlight, with the dual 2.5GbE interfaces providing a combined throughput of up to 550MB/s in link aggregation mode. Real-world file transfers over SMB showed consistent multi-gigabit speeds, demonstrating the board’s ability to handle data-heavy operations effectively. However, users aiming for 10GbE connectivity will need to rely on the PCIe slot, which introduces some trade-offs in terms of expansion options.

In media applications, the N355 CPU managed simultaneous 1080p and 4K Plex streams, with CPU usage remaining under 60% during software transcoding. Native playback and direct-streaming performed significantly better, with no noticeable impact on system resources. While the board lacks dedicated hardware transcoding support, it remains a viable option for users relying on direct-play workflows.

Power efficiency remained a strong suit, with idle power consumption measuring around 9-10W with SSDs installed, increasing to 30-40W under load with multiple drives and VMs active. The low TDP ensures minimal heat output, but active cooling is still recommended for prolonged high workloads. Overall, performance results confirm that this board is well-optimized for NAS duties, though users with high-end processing needs may require a more powerful solution.


CWWK N355 NAS MITX Board Review – Verdict & Conclusion

The CWWK N355 DIY NAS motherboard is an excellent choice for those seeking an affordable and feature-rich Mini-ITX solution for NAS applications. Its combination of dual 2.5GbE networking, six SATA ports, and two NVMe slots offers a strong foundation for storage and high-speed connectivity. Performance-wise, the N355 CPU handles virtualization and media streaming well, maintaining a low power draw while running multiple tasks efficiently. However, the limited PCIe lane allocation can restrict certain use cases, particularly when adding high-performance storage or networking upgrades. Despite these constraints, this motherboard delivers solid performance for users prioritizing a cost-effective and power-efficient NAS setup.

That being said, users should carefully consider their expansion needs before purchasing, as PCIe slot placement and bandwidth limitations may impact future upgrades. Additionally, the lack of ECC memory support may be a concern for enterprise-level deployments, though most home users and small-scale NAS setups will not be significantly affected. Ultimately, the CWWK N355 stands out as a capable and versatile board, offering good performance, reasonable expandability, and excellent value for money.

PROs of the CWWK N355 NAS MoBo CONs of the CWWK N355 NAS MoBo
  • Compact Mini-ITX design, ideal for NAS builds
  • Dual 2.5GbE ports for enhanced network performance
  • Six SATA ports for ample storage expandability
  • Two NVMe slots for high-speed SSD caching or storage
  • Energy-efficient Intel N355 CPU with low power draw
  • Good virtualization support for lightweight VMs and containers
  • Strong media streaming performance, including Plex compatibility
  • Affordable price point compared to similar NAS motherboards
  • PCIe slot placement may block SATA ports with larger cards
  • Limited PCIe lanes constrain high-speed expansion options
  • No ECC memory support, which may be a concern for some user
Where to Buy?
  • CWWK N355 MITX NVMe NAS ($184-295 AliExpress) – HERE
  • CWWK x86 P6 NVMe NAS Box ($160 AliExpress) – HERE
  • DIY N355 NAS Products ($254-349 Amazon) – HERE

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle


Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

❌
❌