Vue normale

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Aujourd’hui — 9 août 2025Flux principal

Joanna Rutkowska - La hackeuse polonaise qui a terrorisé Intel et codé l'OS préféré de Snowden

Par : Korben
9 août 2025 à 13:37

Cet article fait partie de ma série de l’été spécial hackers. Bonne lecture !

C’est l’histoire d’une hackeuse qui a littéralement fait trembler Intel, Microsoft et toute l’industrie de la sécurité et qui a prouvé qu’on ne pouvait JAMAIS faire confiance à un ordinateur.

Je ne me souviens absolument pas du jour où j’ai découvert Blue Pill mais c’est en août 2006, lors de la présentation de Joanna Rutkowska à Black Hat, que le monde a découvert cet outil. Les forums de sécurité étaient en ébullition totale car une hackeuse polonaise de 25 ans venait de démontrer comment créer un rootkit 100% indétectable en utilisant de la virtualisation hardware. Les experts étaient alors partagés entre l’admiration et la terreur absolue.

Comment une chercheuse inconnue du grand public avait-elle pu mettre à genoux toute l’industrie et devenir quelques années plus tard, l’architecte de l’OS le plus sécurisé au monde ? Je vais tout vous raconter…

Joanna Rutkowska naît en 1981 à Varsovie, dans une Pologne encore sous régime communiste. Quand elle débarque sur Terre, Solidarność vient juste d’être interdit et le général Jaruzelski impose la loi martiale. C’est dans ce contexte politique super tendu qu’elle grandit, dans une ville où l’accès à la technologie occidentale reste un luxe rare.

En 1992, à 11 ans, Joanna découvre son premier ordinateur. Un PC/AT 286 avec un processeur à 16 MHz, 2 MB de RAM et un disque dur de 40 MB. Pour une gamine de cet âge dans la Pologne post-communiste, c’est comme trouver un trésor. Alors pendant que ses copines jouent à la poupée Barbie, Joanna passe ses journées devant l’écran monochrome, fascinée par ce monde binaire.

Elle commence par apprendre GW-BASIC, puis découvre Borland Turbo Basic. Les lignes de code défilent, les programmes prennent vie. C’est magique ! Elle passe des heures à créer des petits jeux, des utilitaires et tout ce qui lui passe par la tête. Mais très vite, le BASIC ne lui suffit plus. Elle veut comprendre comment fonctionne VRAIMENT la machine.

L’adolescence de Joanna est marquée par une curiosité dévorante pour les entrailles des systèmes. Elle se plonge dans la programmation assembleur x86, le langage le plus proche du hardware. C’est hardcore, c’est complexe, mais c’est exactement ce qu’elle cherche. Elle veut tout contrôler, tout comprendre, tout maîtriser jusqu’au dernier registre du processeur.

Alors elle ne se contente pas d’apprendre. Elle expérimente, crée ses premiers virus. Pas pour nuire hein, mais pour comprendre. Comment un programme peut-il se répliquer ? Comment peut-il se cacher ? Comment peut-il survivre ? Ces questions l’obsèdent. Elle passe ses nuits à désassembler des programmes, à tracer leur exécution instruction par instruction.

Et au milieu des années 90, quelque chose change. Les maths et l’intelligence artificielle commencent à la fasciner. Elle découvre les réseaux de neurones, les algorithmes génétiques, et tout ce qui touche à l’IA naissante. Elle dévore les whitepapers de recherche, implémente des prototypes. Et cette même passion qu’elle avait mise dans l’assembleur, elle la met maintenant dans l’IA.

Parallèlement, elle découvre Linux et le monde de l’open source et c’est une révélation totale ! Un système d’exploitation dont on peut lire le code source, c’est fou ! Elle peut enfin voir comment fonctionne vraiment un OS moderne. Elle compile son premier kernel, le modifie, le recompile. Elle apprend la programmation système, les drivers, les mécanismes de sécurité du kernel.

Puis à la fin des années 90, Joanna fait un choix crucial. Elle retourne à sa première passion : la sécurité informatique. Mais cette fois avec une approche différente. Elle ne veut plus créer des virus pour le fun, non, elle veut comprendre comment sécuriser les systèmes, comment les protéger, comment détecter les attaques les plus sophistiquées.

Alors elle s’inscrit à l’Université de Technologie de Varsovie (Warsaw University of Technology), l’une des meilleures facs d’informatique de Pologne et là, elle approfondit ses connaissances théoriques tout en continuant ses recherches personnelles sur les exploits Linux x86 et Win32 puis finit par se spécialiser dans la sécurité système, un domaine encore peu exploré à l’époque.

Son mémoire de master porte sur les techniques de dissimulation des malwares. Elle y développe des concepts qui préfigurent déjà ses futures recherches. Comment un programme malveillant peut-il se rendre totalement invisible ? Comment peut-il tromper les outils de détection les plus sophistiqués ? Ses profs sont bluffés par la profondeur de son analyse.

Diplômée, Joanna commence à bosser comme consultante en sécurité, mais très vite, elle réalise que le consulting ne la satisfait pas. Elle veut faire de la recherche pure et dure, explorer les limites de ce qui est possible, repousser les frontières de la sécurité informatique. Pas juste auditer des systèmes pour des clients corporate.

C’est à cette époque qu’elle commence à s’intéresser à la virtualisation. Intel et AMD viennent de sortir leurs nouvelles extensions de virtualisation hardware : VT-x et AMD-V. Pour la plupart des gens, c’est juste une amélioration technique pour faire tourner des VMs plus efficacement mais pour Joanna, c’est bien plus que ça. C’est une nouvelle surface d’attaque.

Elle passe des mois à étudier ces nouvelles technologies. Elle lit les manuels Intel de 3000 pages (oui, 3000 !), analyse chaque instruction, comprend chaque mécanisme. Les opcodes VMXON, VMXOFF, VMRESUME deviennent ses meilleurs amis et petit à petit, une idée germe dans son esprit génial.

Et si on pouvait utiliser la virtualisation non pas pour protéger, mais pour attaquer ? Et si on pouvait créer un hyperviseur malveillant qui prendrait le contrôle total d’un système sans que personne ne s’en aperçoive ? Un rootkit qui s’exécuterait à un niveau encore plus bas que le kernel, dans le ring -1 comme on dit.

L’idée est révolutionnaire car jusqu’alors, les rootkits devaient modifier le kernel, laissaient des traces, et étaient détectables d’une manière ou d’une autre. Mais avec la virtualisation hardware, on pourrait créer un rootkit qui contrôle le système d’exploitation lui-même sans jamais le toucher. Le rootkit parfait en somme…

En 2006, Joanna est prête. Elle a développé une preuve de concept qu’elle appelle “Blue Pill”, en référence à la pilule bleue de Matrix. Le nom est parfait car comme dans le film, le système d’exploitation continue de vivre dans une réalité virtuelle sans se douter qu’il est contrôlé par une entité supérieure. “Your operating system swallows the Blue Pill and it awakes inside the Matrix”, comme elle le dira.

À cette époque, Joanna bosse pour COSEINC Research, une boîte de sécurité basée à Singapour et ce sont eux qui financent ses recherches sur Blue Pill. Mais attention, Blue Pill n’est pas destiné à être vendu ou distribué. C’est exclusivement pour la recherche, simplement pour “prouver le concept” (PoC).

Le 3 août 2006, Las Vegas. C’est l’heure de la Black Hat, LA conférence de sécurité la plus prestigieuse au monde. Joanna monte sur scène, elle a 25 ans, elle est inconnue du grand public américain, et elle s’apprête à bouleverser le monde de la cybersécurité.

The idea behind Blue Pill is simple”, commence-t-elle avec son accent polonais caractéristique, “Your operating system swallows the Blue Pill and it awakes inside the Matrix controlled by the ultra-thin Blue Pill hypervisor.

La salle est bondée. Les experts sont venus voir cette jeune chercheuse polonaise qui prétend avoir créé un rootkit indétectable. Certains sont sceptiques. D’autres curieux. Personne ne s’attend à ce qui va suivre.

Joanna lance sa démo. En quelques secondes, elle installe Blue Pill sur un système Windows Vista en cours d’exécution. Pas de redémarrage. Pas de modification visible. Le système continue de fonctionner normalement, sauf qu’il est maintenant entièrement sous le contrôle de Blue Pill.

Elle montre alors comment Blue Pill peut intercepter tous les appels système, modifier les résultats, cacher des processus, des fichiers, des connexions réseau. Tout ça sans toucher à un seul octet du kernel Windows. Les outils de détection de rootkits ne voient rien, les antivirus sont aveugles et le système lui-même n’a aucune idée qu’il s’exécute dans la machine virtuelle.

Le plus fou c’est que Blue Pill n’exploite aucun bug dans AMD-V ou Intel VT-x. Il utilise uniquement les fonctionnalités documentées. Ce n’est pas un exploit, c’est une utilisation créative de la technologie. “Blue Pill does *not* rely on any bug in Pacifica neither in OS”, précise-t-elle.

La démonstration se termine. Un silence de cathédrale règne dans la salle. Puis les applaudissements explosent. Les experts présents réalisent qu’ils viennent d’assister à quelque chose d’historique. Joanna Rutkowska vient de prouver que la virtualisation hardware peut être “weaponisée”.

L’impact est immédiat et dévastateur et les médias s’emparent de l’histoire. eWeek Magazine la nomme parmi les “Five Hackers who put a mark on 2006”. Les forums de sécurité s’enflamment et les débats font rage. Est-ce vraiment indétectable ? Comment se protéger ? Faut-il interdire la virtualisation hardware ?

Microsoft est en panique totale. Leur nouveau Vista, qui devait être le système le plus sécurisé jamais créé, vient d’être compromis par une hackeuse de 25 ans et surtout, Intel n’est pas mieux car leur technologie VT-x, censée améliorer la sécurité, devient soudain une menace. Même AMD essaie de minimiser, publiant un communiqué disant que Blue Pill n’est pas vraiment “indétectable”.

Mais Joanna ne s’arrête pas là et dans les mois qui suivent, elle publie plus de détails techniques sur son blog “The Invisible Things”. Elle explique comment Blue Pill fonctionne, les défis techniques qu’elle a dû surmonter. Bien sûr, elle ne publie pas le code source complet (COSEINC garde ça pour leurs trainings), mais elle donne assez d’infos pour que d’autres chercheurs comprennent.

Et en 2007, la controverse atteint son paroxysme. Trois chercheurs en sécurité de renom, Thomas Ptacek de Matasano Security, Nate Lawson de Root Labs et Peter Ferrie de Symantec, défient publiquement Joanna. Ils prétendent avoir développé des techniques pour détecter Blue Pill et ils lui proposent un duel à Black Hat 2007.

Leur présentation s’intitule “Don’t Tell Joanna: The Virtualised Rootkit Is Dead”. Ils veulent prouver que Blue Pill n’est pas si indétectable que ça alors ils proposent un challenge : leur détecteur contre le rootkit de Joanna. Que le meilleur gagne !

Joanna accepte le défi, mais à une condition : Elle demande 384 000 dollars pour participer. Pas par cupidité, mais pour border le projet car ce qu’elle a maintenant, c’est un prototype et pour en faire quelque chose de vraiment “hard to detect”, il faudrait deux personnes à plein temps pendant six mois à 200 dollars de l’heure. Elle et Alexander Tereshkin ont déjà investi quatre mois-personnes et il en faudrait douze de plus pour avoir un vrai rootkit de production.

Certains disent qu’elle a peur de perdre, d’autres comprennent sa position et que le montant demandé représente le coût réel du développement d’un rootkit de production, et pas juste une preuve de concept académique.

Finalement, le duel n’aura pas lieu et les deux parties s’accordent sur le fait qu’en l’état actuel, Blue Pill n’est pas prêt pour un tel challenge. Mais les chercheurs présentent quand même leur talk. Joanna et Alexander Tereshkin contre-attaquent avec leur propre présentation, démontrant que les méthodes de détection proposées sont imprécises et facilement contournables.

En avril 2007, au milieu de cette tempête médiatique, Joanna prend alors une décision qui va changer sa vie. Elle fonde Invisible Things Lab (ITL) à Varsovie. L’idée est simple : créer un laboratoire de recherche indépendant, focalisé sur la sécurité système au plus bas niveau. Pas de produits commerciaux, pas de bullshit marketing. Juste de la recherche pure et dure.

ITL attire rapidement les meilleurs talents. Alexander Tereshkin, un génie russe de la sécurité hardware. Rafał Wojtczuk, un expert polonais des systèmes d’exploitation qui deviendra son bras droit pendant des années. Ensemble, ils forment une dream team de la sécurité offensive. Et leur première cible majeure c’est Intel Trusted Execution Technology (TXT).

C’est une technologie qui est censée garantir qu’un système démarre dans un état sûr, non compromis. C’est le Saint Graal de la sécurité à savoir un boot de confiance, vérifié par le hardware. Intel en fait la promotion comme LA solution contre les rootkits.

Alors en janvier 2009, Joanna et Rafał frappent fort et publient une attaque dévastatrice contre Intel TXT. Le point faible c’est le System Management Mode (SMM), un mode d’exécution spécial du processeur qui a plus de privilèges que tout le reste, y compris l’hyperviseur. C’est le ring -2, encore plus profond que le ring -1 de Blue Pill !

Leur découverte est brillante dans sa simplicité car TXT vérifie l’intégrité du système au démarrage, mais il ne vérifie pas le code SMM. Si un attaquant parvient à infecter le SMM avant le boot, il peut alors survivre au processus de démarrage sécurisé et compromettre le système “de confiance”. Pour prouver leur dires, ils créent un rootkit SMM qui s’installe via une vulnérabilité de cache poisoning et une fois en place, il peut compromettre n’importe quel système, même après un boot TXT “sécurisé”. Ils démontrent ainsi l’attaque en ajoutant une backdoor au hyperviseur Xen.

Game over pour Intel TXT.

Intel est furieux. Non seulement leur technologie phare vient d’être cassée, mais Joanna révèle que des employés Intel avaient alerté le management sur cette vulnérabilité dès 2005. Trois ans d’inaction. Trois ans pendant lesquels les clients ont cru être protégés alors qu’ils ne l’étaient pas. C’est un scandale.

Face au silence d’Intel, Joanna et Rafał décident de leur forcer la main. En mars 2009, ils annoncent qu’ils vont publier le code complet de leur exploit SMM. C’est un coup de poker risqué car publier un exploit aussi puissant pourrait être dangereux, mais c’est le seul moyen de forcer Intel à agir.

Heureusement, la stratégie fonctionne et Intel se met enfin au boulot pour pondre des correctifs. Mais le problème est complexe car il ne s’agit pas juste de patcher un bug. Il faut repenser toute l’architecture de confiance, développer un “SMM Transfer Monitor” (STM), convaincre les fabricants de BIOS de l’implémenter. Ça va prendre des années.

Pendant ce temps, Joanna continue d’explorer d’autres angles d’attaque. Elle s’intéresse particulièrement aux attaques physiques. C’est dans ce contexte qu’elle invente un concept qui va entrer dans l’histoire : l’attaque “Evil Maid”.

L’idée lui vient lors d’un voyage. Elle réalise que même avec le chiffrement intégral du disque, un laptop laissé dans une chambre d’hôtel reste vulnérable. Une femme de chambre malveillante (d’où le nom “Evil Maid”) pourrait booter l’ordinateur sur une clé USB, installer un keylogger dans le bootloader, et capturer le mot de passe de déchiffrement lors du prochain démarrage.

En 2009, elle publie alors une preuve de concept contre TrueCrypt, le logiciel de chiffrement le plus populaire de l’époque. L’attaque est élégante : une clé USB bootable qui modifie TrueCrypt pour enregistrer le mot de passe. L’utilisateur revient, tape son mot de passe, et hop, il est enregistré sur le disque. L’attaquant n’a plus qu’à revenir pour le récupérer.

Le terme “Evil Maid attack” entre immédiatement dans le vocabulaire de la sécurité car il capture parfaitement la vulnérabilité fondamentale des appareils laissés sans surveillance. Même avec les meilleures protections logicielles, un accès physique change tout. C’est devenu un classique, au même titre que “man-in-the-middle” ou “buffer overflow”. Mais Joanna ne se contente pas de casser des choses… Elle veut aussi construire et c’est là que naît son projet le plus ambitieux : Qubes OS.

L’idée de Qubes germe depuis longtemps dans son esprit, car après des années à découvrir faille sur faille, elle réalise une vérité fondamentale : aucun système n’est sûr. Il y aura toujours des bugs, toujours des vulnérabilités. La question n’est donc pas “si” mais “quand” un système sera compromis.

Alors plutôt que d’essayer de créer un système parfait (mission impossible), pourquoi ne pas créer un système qui assume qu’il sera compromis ? Un système où la compromission d’une partie n’affectera pas le reste ? C’est le concept de “security by compartmentalization”, la sécurité par compartimentation.

En 2010, elle s’associe avec Rafał Wojtczuk et Marek Marczykowski-Górecki pour concrétiser cette vision. Qubes OS est basé sur Xen, un hyperviseur bare-metal mais au lieu d’utiliser Xen pour faire tourner plusieurs OS complets, Qubes l’utilise pour créer des dizaines de machines virtuelles légères, chacune dédiée à une tâche spécifique. Vous voulez surfer sur des sites douteux ? Une VM dédiée isolée. Faire du banking en ligne ? Une autre VM. Travailler sur des documents sensibles ? Encore une autre VM. Chaque VM est isolée des autres, comma ça, si l’une est compromise par un malware, les autres restent safe. C’est loin d’être con !

Mais Qubes va encore plus loin. Il utilise des VMs spécialisées pour les tâches critiques. NetVM gère uniquement le réseau. USB VM gère les périphériques USB (super dangereux). AudioVM gère le son. Ainsi, même si un driver est compromis, il ne peut pas accéder au reste du système. L’isolation est totale.

Le développement de Qubes est un défi monumental car il faut repenser toute l’expérience utilisateur. Comment faire pour que l’utilisateur lambda puisse utiliser des dizaines de VMs sans devenir fou ? Comment gérer le copier-coller entre VMs de manière sécurisée ? Comment partager des fichiers sans compromettre l’isolation ?

Joanna et son équipe passent ainsi deux ans à résoudre ces problèmes. Ils créent des mécanismes élégants pour que tout soit transparent. Les fenêtres des différentes VMs s’affichent sur le même bureau, avec des bordures colorées pour indiquer leur niveau de sécurité (rouge pour non fiable, jaune pour perso, vert pour travail, etc.) et le copier-coller fonctionne, mais de manière contrôlée via des canaux sécurisés.

Puis le 3 septembre 2012, Qubes OS 1.0 est officiellement lancé. La réaction de la communauté sécurité est mitigée. Certains adorent le concept tandis que d’autres trouvent ça trop complexe, trop lourd, trop paranoïaque. “C’est overkill”, disent certains. “C’est le futur”, répondent d’autres. Mais Joanna a un supporter de poids…

En 2013, Edward Snowden fuit les États-Unis avec des téraoctets de documents classifiés de la NSA. Pour communiquer avec les journalistes de manière sécurisée, il a besoin d’un système ultra-sécurisé. Son choix ? Qubes OS.

Le 29 septembre 2016, Snowden tweete : “If you’re serious about security, @QubesOS is the best OS available today. It’s what I use, and free. Nobody does VM isolation better.” Pour Joanna, c’est une validation extraordinaire car si l’homme le plus recherché du monde fait confiance à Qubes pour sa sécurité, c’est que le système fonctionne.

Le soutien de Snowden propulse Qubes dans la lumière et, d’un coup, tout le monde veut comprendre ce système. Les journalistes qui travaillent sur des sujets sensibles l’adoptent (Laura Poitras, Glenn Greenwald), les activistes l’utilisent, les chercheurs en sécurité aussi.

Mais Joanna reste humble. “A reasonably secure operating system”, c’est comme ça qu’elle décrit Qubes. Pas “ultra-secure”, pas “unbreakable”. Juste “reasonably secure”. Cette humilité, cette reconnaissance des limites, c’est ce qui fait la force de son approche car elle sait qu’aucun système n’est parfait.

Au fil des ans, Qubes continue d’évoluer. Version 2.0 en 2014, 3.0 en 2015, 4.0 en 2018. Chaque version apporte des améliorations, des raffinements et l’équipe grandit. La communauté aussi. Qubes devient une référence dans le monde de la sécurité, utilisé par ceux qui ont vraiment besoin de protection.

Mais Joanna a une philosophie qui la distingue des autres, car elle refuse catégoriquement de déposer des brevets. “I proudly hold 0 (zero) patents”, affirme-t-elle sur ses réseaux. Pour elle, les brevets sont antithétiques à la sécurité et la sécurité doit être ouverte, vérifiable, accessible à tous et surtout pas enfermée dans des coffres légaux.

Cette philosophie s’étend à sa vision de la liberté individuelle. “I strongly believe that freedom of individuals is the most important value”, dit-elle car pour elle, la sécurité informatique n’est pas une fin en soi. C’est un moyen de préserver la liberté, de permettre aux individus de faire des choix, de protéger leur vie privée contre les États et les corporations.

En octobre 2018, après neuf ans à la tête de Qubes et d’ITL, Joanna surprend tout le monde. Elle annonce qu’elle prend un congé sabbatique. Elle veut explorer de nouveaux horizons, réfléchir à la suite. Qubes est entre de bonnes mains avec Marek Marczykowski-Górecki qui prend la relève.

Sa décision est mûrement réfléchie. “These are very important problems, in my opinion, and I’d like to work now on making the cloud more trustworthy, specifically by limiting the amount of trust we have to place in it”, explique-t-elle. Après avoir sécurisé les endpoints, elle veut maintenant s’attaquer au cloud.

Nouvelle surprise : Joanna rejoint Golem, un projet de blockchain visant à créer un “ordinateur décentralisé”. Elle devient Chief Strategy Officer et Chief Security Officer. Son passage de la sécurité des endpoints à la blockchain surprend beaucoup de monde. “Qu’est-ce qu’elle va faire dans la crypto ?”, se demandent certains.

Mais pour Joanna, c’est une évolution logique car après avoir passé des années à sécuriser des systèmes individuels, elle veut maintenant s’attaquer à la sécurité des systèmes distribués. Comment sécuriser un ordinateur composé de milliers de machines appartenant à des inconnus ? Comment garantir la confidentialité dans un système décentralisé ?

En juillet 2019, la Golem Foundation commence alors ses opérations et Joanna devient “Long-term navigator and Wildland chief architect”. Son projet le plus ambitieux chez Golem c’est Wildland, un système de fichiers décentralisé qui veut libérer les données des silos des GAFAM. L’idée de Wildland c’est de permettre aux utilisateurs de stocker leurs données où ils veulent (Amazon S3, Dropbox, leur propre serveur, IPFS…) tout en ayant une interface unifiée. Plus besoin de se souvenir où est stocké quoi. Plus de vendor lock-in. Vos données vous appartiennent vraiment.

Et surtout, Wildland va plus loin que le simple stockage. Il introduit des concepts innovants comme la “multi-catégorisation” (un fichier peut appartenir à plusieurs catégories simultanément) et le “cascading addressing” (possibilité de créer des hiérarchies complexes sans point central de confiance). C’est de la décentralisation pragmatique.

What we believe we do in a non-standard way is we are more pragmatic”, explique Joanna. “We don’t tell the user: ditch any kind of data centers you use and only use a P2P network. We say: use anything you want.” Cette approche pragmatique, c’est du pur Joanna.

Le 24 juin 2021, Wildland 0.1 est lancé lors d’un meetup à Varsovie. Joanna présente le projet : “Wildland containers are similar to Docker containers, except that dockers are for code, and Wildland containers can store any type of information.” L’accueil est positif mais mesuré. Le projet est ambitieux, peut-être trop.

Pour Joanna, Wildland représente la suite logique de son travail sur Qubes. Si Qubes compartimente l’exécution pour la sécurité, Wildland compartimente les données pour la liberté. Les deux ensemble offrent une vision d’un futur où les utilisateurs reprennent le contrôle de leur vie numérique.

Aujourd’hui, Joanna continue son travail sur les systèmes décentralisés. Elle reste conseillère pour Qubes OS, participe aux décisions stratégiques et sur son profil GitHub, ces 2 mots résument sa philosophie : “Distrusts computers.” Cette méfiance fondamentale envers la technologie, paradoxale pour quelqu’un qui y a consacré sa vie, est en fait sa plus grande force.

C’est parce qu’elle ne fait pas confiance aux ordinateurs qu’elle peut les sécuriser. C’est parce qu’elle comprend leurs failles qu’elle peut les protéger. C’est parce qu’elle sait qu’ils nous trahiront qu’elle construit des systèmes qui limitent les dégâts.

Elle a montré que la virtualisation pouvait être une arme avec Blue Pill. Elle a prouvé qu’aucun système n’est inviolable avec ses attaques contre Intel TXT. Elle a inventé des concepts comme l’Evil Maid attack qui font maintenant partie du vocabulaire de base. Mais surtout, elle a créé Qubes OS, un système qui protège les plus vulnérables. Journalistes, activistes, lanceurs d’alerte… Tous ceux qui ont vraiment besoin de sécurité utilisent Qubes. C’est son œuvre majeure, sa contribution la plus importante à la liberté numérique.

Elle incarne aussi une certaine éthique du hacking. Pas le hacking pour la gloire ou l’argent (elle aurait pu se faire des millions avec des brevets), mais le hacking comme outil de liberté. Le hacking comme moyen de reprendre le contrôle. Le hacking comme acte de résistance contre les systèmes opaques et les monopoles technologiques.

Aujourd’hui, Joanna continue d’écrire, de chercher et de construire. Ses articles sur “Intel x86 Considered Harmful” et “State Considered Harmful” proposent des visions radicales de ce que pourrait être l’informatique. Un monde sans état persistant, sans les architectures x86 legacy, sans les compromis du passé.

Des rêves impossibles ? Peut-être pas…

Sources : Wikipedia - Joanna Rutkowska, Wikipedia - Blue Pill, The Invisible Things Blog, Black Hat 2006 - Blue Pill Presentation, Qubes OS Official Website, Edward Snowden Twitter, Wildland Project, Invisible Things Lab

❌
❌