Vue lecture

Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.

N7 AMD 2x 10GbE NAS Motherboard Review

N7 AMD 8845HS 2x 10GbE NAS Motherboard Review

The MINIROUTE N7 NAS motherboard, also sold under the CWWK brand, is a compact Mini-ITX board built around the AMD Ryzen 8845HS processor, targeting power users and professionals seeking a dense, high-performance platform for NAS or compact server deployments. With its Zen 4 architecture, integrated AMD Ryzen AI NPU (delivering up to 16 TOPS), and 8-core/16-thread configuration, the board aims to bridge the gap between consumer-grade ITX systems and commercial turnkey NAS solutions. It supports up to eight SATA drives via dual SFF-8643 ports, offers dual 10GbE RJ45 connections using Aquantia AQC113 controllers, and features modern expansion options including PCIe Gen 4, USB4 (40Gbps), and dual NVMe M.2 slots. The system is designed to accommodate DDR5 SO-DIMM memory up to 96GB (2×48GB), and includes support for triple 4K/8K video output. With a retail price of around $489–$509 depending on configuration, the N7 represents a fully DIY-focused solution, delivering a dense hardware feature set for users willing to assemble and fine-tune their own NAS stack. This review evaluates its physical design, storage implementation, hardware layout, connectivity, system performance under various workloads, and its broader viability as a platform for UnRAID, Proxmox, or ZimaOS deployments.

N7 AMD 2x 10GbE NAS Motherboard Review – Quick Conclusion

The MINIROUTE N7 (also marketed under the CWWK brand) delivers an unusually comprehensive blend of performance, connectivity, and storage capacity within the compact constraints of a Mini-ITX form factor, positioning it as one of the most capable motherboards in the DIY NAS and small-server market segment. Centered around the AMD Ryzen 8845HS processor, it provides 8 high-performance Zen 4 cores and 16 threads, along with full PCIe Gen 4 support, dual independent 10GbE RJ45 ports, native 8-bay SATA connectivity via SFF-8643, and dual M.2 NVMe slots running at full PCIe 4.0 ×4 speeds. This combination allows users to build a system capable of high-throughput file sharing, virtualized infrastructure, Docker containers, multimedia handling, and even AI-enhanced workloads if supported by the chosen software environment. Its inclusion of USB4 (40Gbps), bifurcation-ready PCIe x16 slot, and triple display outputs (HDMI, DisplayPort, USB-C with DP Alt Mode) gives it rare versatility, allowing it to serve simultaneously as a NAS, hypervisor, and local-access media or control interface. These features, delivered without the need for PCIe add-in cards or external HBA controllers, simplify the build process and reduce total system cost when compared to equivalent prebuilt systems or workstation boards.

However, these strengths come with notable considerations. The board’s baseline power consumption is significantly higher than what one might find in ARM-based or low-power x86 embedded solutions, and thermals can become a concern under sustained load unless paired with an appropriate LGA1700-compatible cooler and adequate case airflow. Official ECC memory support is absent, which may limit its suitability for enterprise deployments requiring strict data integrity, even though ECC modules are detected in BIOS and several Linux-based NAS OS environments. The SFF-8643 connectors, while efficient and space-saving, add complexity for first-time builders who are unfamiliar with breakout cables or SAS-style drive setups. Despite this, experienced users will find the trade-offs acceptable in light of the raw capability the board offers. Whether you’re deploying TrueNAS SCALE with multiple VMs, using Proxmox for containerized services, or running UnRAID with GPU pass-through and AI indexing, the N7 provides enough bandwidth, I/O, and compute power to support demanding workloads in a footprint small enough to fit in virtually any modern NAS enclosure. For builders who prioritize flexibility, performance, and dense integration over energy efficiency or plug-and-play simplicity, the N7 emerges as one of the most forward-looking DIY NAS platforms currently available.

BUILD QUALITY - 9/10
HARDWARE - 9/10
PERFORMANCE - 8/10
PRICE - 8/10
VALUE - 8/10


8.4
PROS
👍🏻High-Performance CPU: Ryzen 8845HS offers 8 cores, 16 threads, and strong single/multi-thread performance suitable for VMs and containers.
👍🏻Dual 10GbE Ports: Independent 10GbE NICs with full PCIe Gen 4 ×1 allocation allow high-throughput networking without contention.
👍🏻Support for 8 SATA Drives: Native 8-bay SATA support via dual SFF-8643 eliminates the need for add-on HBA cards in most NAS builds.
👍🏻Dual NVMe Gen 4 Slots: Two M.2 2280 slots support full PCIe Gen 4 ×4 speeds for fast boot, cache, or tiered storage.
👍🏻PCIe Gen 4 x16 Slot: Full-length slot with x8 signal and BIOS bifurcation enables GPU, RAID, or multi-NVMe card expansion.
👍🏻USB4 Support: Includes one 40Gbps USB-C port for high-speed external storage or passthrough options in advanced OS setups.
👍🏻Triple Display Outputs: HDMI, DisplayPort, and USB-C (DP Alt Mode) support up to 8K for local GUI or media server applications.
👍🏻Compact ITX Layout: All features integrated into a 17cm × 17cm form factor, compatible with standard NAS and SFF cases.
CONS
👎🏻No Official ECC Support: ECC DIMMs are detected but error correction is unverified, limiting its appeal in critical data environments. (correction, 8845HS Pro CPU DOES support ECC, not this one)
👎🏻Moderately High Power Consumption: Idle power (~25W) and load (>60W) exceed typical low-power NAS boards, requiring active cooling.
👎🏻SFF-8643 Complexity: Requires breakout cables and familiarity with SAS-style connectors, which may confuse first-time NAS builders.

Where to Buy?
  • Amazon US CWWK N7 NAS MoBo+CPU for $489 – HERE
  • CWWK N7 NAS Board £476 on Amazon UK – HERE
  • CWWK N7 8845HS Board €559 on Amazon DE – HERE
  • N7 8845HS 2x 10GbE NAS Board on Amazon ($489) HERE
  • N7 8845HS + Jonsbo Fan 2x 10GbE NAS Board on Amazon ($509) HERE

N7 AMD 2x 10GbE NAS Motherboard Review – Design and Storage

The MINIROUTE N7 adheres to the Mini-ITX standard with a footprint of 17 × 17 cm, making it compatible with a wide range of compact NAS and SFF (Small Form Factor) enclosures. Despite its small size, the board manages to integrate an unusually dense set of components, routing power and data traces efficiently around the central CPU socket and key interface headers. The board requires both a standard 24-pin ATX and 4-pin CPU power connector, which is a practical choice for users reusing off-the-shelf ATX PSUs. The component layout is designed for vertical airflow, which aligns well with tower-style NAS chassis using top-down cooling. Passive heat dissipation is supplemented by a large copper heatsink preinstalled over the CPU and chipset area, although users will need to add a compatible LGA1700 cooler for effective thermal management in prolonged workloads.

Drive connectivity on the N7 is handled via two onboard SFF-8643 ports, each supporting up to four SATA 3.0 devices through breakout cables. These mini-SAS connectors route through onboard ASMedia ASM1164 controllers and offer up to 6Gbps per port, enabling up to eight storage devices across a single board without the need for a separate HBA card. Each SFF-8643 port is linked to a PCIe Gen 3 x1 lane, which limits peak throughput to just under 1GB/s per group of four drives.

While this isn’t a bottleneck in typical NAS workloads involving sequential reads/writes from hard drives, it may constrain performance with large SSD arrays or heavy mixed IOPS usage. Included in the box are two breakout cables for converting the 8643 ports to 4 × SATA each, streamlining setup and making the N7 more appealing for users assembling 6- to 8-bay NAS systems without additional add-ons.

The N7’s decision to use SFF-8643 instead of individual SATA headers is a deliberate choice that favors a clean internal cable setup, particularly in compact NAS cases with limited clearance or rear-mounted drive cages. This design also supports the use of add-on expansion modules such as CWWK’s 6-bay carrier boards or U.2 and M.2 SATA-to-SFF adapters, adding deployment flexibility for those planning to use a mix of HDDs and SSDs.

During physical inspection and test installation, the SATA connectors routed cleanly to the front of the board, minimizing crossflow interference for cooling and allowing for unobstructed access to RAM and NVMe slots. This layout, while compact, doesn’t obstruct airflow or block RAM or PCIe slot access even when all drive connections are populated.

Storage expansion is also supported via two M.2 NVMe slots: one mounted on the top side of the board and one underneath. Both slots support 2280-length drives at PCIe Gen 4 x4 speeds, providing ample bandwidth for SSD caching or fast boot devices. These NVMe drives are independent of the SATA controller and do not share lanes with the PCIe or USB4 ports, according to observed behavior during SSD testing. Read speeds on Gen 4 drives approached 5.1 GB/s, while write speeds hovered around 4.6 GB/s under sequential workloads. Thermals for these slots will depend on case design and airflow, as there are no included heatsinks for the M.2 bays—something users building 24/7 systems will want to address through motherboard-side or chassis-side cooling accessories.

The storage layout and capacity potential make the N7 particularly well suited for software-defined storage platforms like TrueNAS SCALE, UnRAID, and ZimaOS. RAID arrays, SSD cache pools, and hybrid tiered storage setups can all be constructed using the eight SATA and two NVMe interfaces. Although bandwidth on the SFF-8643 links is limited compared to dedicated HBA cards, the simplicity and integration on a Mini-ITX board are notable advantages. For users building an 8-bay NAS that includes SSD-based caching or boot storage, the N7’s native options reduce both hardware complexity and overall build cost. The only notable storage-related limitation is the lack of support for hardware RAID or U.2 ports natively, but given its price and form factor, the board aligns well with the needs of most advanced DIY NAS builders.

N7 AMD 2x 10GbE NAS Motherboard Review – Hardware

At the center of the N7 motherboard is the AMD Ryzen™ 8845HS processor, a Zen 4-based 8-core, 16-thread CPU designed for high-efficiency performance in mobile and embedded systems. With a base clock of 3.8GHz and a maximum boost clock of 5.1GHz, this chip provides considerably more computational headroom than most processors found in pre-built NAS devices or ITX boards at this price point. Its multithreaded performance is particularly well-suited for tasks like virtualization, multi-user services, parallel Docker workloads, and software-defined storage management.

The CPU also integrates AMD’s Radeon 780M graphics engine, based on RDNA 3 architecture, with 12 GPU cores clocked at up to 2.7GHz, which is more than adequate for media playback, transcoding, or even light GPU-accelerated applications under supported environments.

Furthermore, the inclusion of the AMD Ryzen AI engine adds another dimension to its capabilities, offering up to 16 TOPS of local inference performance—opening the door for AI-driven surveillance, metadata tagging, and potentially video analytics if supported by the NAS OS or containers used.

Memory support is provided through two DDR5 SO-DIMM slots, with default 5600MHz support and capacity up to 48GB per stick, enabling a maximum of 96GB of RAM. This high memory ceiling is advantageous for power users running memory-intensive services such as RAM-cached storage, ZFS-based deduplication, large-scale container deployments, or multiple virtual machines. Although the board does not officially support ECC memory, testing on platforms such as UnRAID and ZimaOS showed that ECC modules are recognized and initialized, albeit without clear confirmation of active error correction.

Later investigation showed that the PRO version of the 8845HS CPU does in fact support ECC, whereas the standard 8845HS here does not – which is a shame that there is not a separate configuration that includes this CPU available from the brand at an additional cost for users who consider ECC support a ‘deal breaker’. The SO-DIMM slots are well-positioned and unobstructed, allowing for tool-free upgrades or swaps without removing other components, which is especially important given the compact ITX layout and potential space constraints in NAS enclosures.

What sets the N7 apart from most Mini-ITX NAS boards is its thoughtful PCIe lane distribution, which takes full advantage of the 20 available PCIe Gen 4 lanes provided by the Ryzen 8845HS.

The full-length PCIe slot operates at Gen 4 x8 by default, but also supports bifurcation into dual x4 via BIOS for users installing expansion cards like dual-NVMe adapters or multi-port network cards.

Each M.2 NVMe slot is also connected via a dedicated PCIe Gen 4 x4 lane, ensuring maximum bandwidth of up to 8GB/s for modern SSDs, without any shared bandwidth with SATA or network interfaces.

The two onboard 10GbE RJ45 ports are served by separate Aquantia AQC113C controllers, each connected via their own PCIe Gen 4 x1 link, giving up to 2GB/s per port and ensuring full-duplex throughput without crosstalk.

This dedicated lane allocation across network, storage, and expansion interfaces is rare in compact boards and critical for users seeking consistent performance under concurrent high-load scenarios like multi-user file access, SSD-based caching, and active VM hosting.

Category Specification
Model MINIROUTE N7 / CWWK N7 NAS ITX Motherboard
Form Factor Mini-ITX (17 × 17 cm)
Processor AMD Ryzen™ 8845HS (8 cores / 16 threads, Zen 4, up to 5.1GHz)
GPU AMD Radeon™ 780M (12 cores, up to 2.7GHz)
AI NPU AMD Ryzen™ AI Engine (up to 16 TOPS)
Chipset SoC (Integrated, no discrete chipset)
Memory Support 2 × DDR5 SO-DIMM (up to 96GB total, 5600MHz, non-ECC officially)
M.2 Slots 2 × M.2 2280 NVMe (PCIe Gen 4 ×4 each; top + rear-mounted)
SATA Ports 2 × SFF-8643 (8 × SATA 6Gb/s total via included breakout cables)
SATA Controller 2 × ASMedia ASM1164 (PCIe Gen 3 ×1 each)
PCIe Slot 1 × PCIe x16 (Gen 4 ×8 signal; bifurcation to 2 × x4 supported)
Ethernet Ports 2 × 10GbE RJ45 (Aquantia AQC113C-B1, auto-negotiating 10/5/2.5/1GbE/100M)
USB Ports 1 × USB4 Type-C (40Gbps), 3 × USB 3.2 Gen1 (5Gbps)
Internal USB 1 × USB 3.0 header, 1 × USB 2.0 header, 1 × Type-E header
Audio 1 × 3.5mm combo audio jack
Display Output 1 × HDMI, 1 × DisplayPort, 1 × USB-C (Alt Mode); up to 8K supported
Power Input 24-pin ATX + 4-pin CPU
Cooling Passive copper heatsink (LGA1700-compatible; cooler not included)
Package Includes 2 × SFF-8643 to 4×SATA cables, I/O shield, screws, warranty card

N7 AMD 2x 10GbE NAS Motherboard Review – Ports and Connections

The MINIROUTE N7 motherboard delivers a well-rounded set of connectivity options, with a clear emphasis on high-speed networking and data transfer—features that are increasingly essential in modern NAS environments. Dominating the rear I/O are two 10GbE RJ45 ports, each backed by an Aquantia AQC113C-B1 controller and connected via independent PCIe Gen 4 ×1 lanes. This design ensures that each network interface operates without contention, allowing for sustained full-duplex bandwidth on both ports simultaneously.

The ports support all major Ethernet standards from 100M up to 10Gbps, enabling the board to adapt to diverse infrastructure including SMB networks, prosumer switches, and enterprise environments with 10GBase-T. For users setting up link aggregation (LACP), isolated network zones (i.e., separation of iSCSI and SMB), or even point-to-point replication between servers, these dual interfaces offer deployment flexibility typically absent on most consumer-grade ITX boards. While copper 10GbE does introduce higher thermal output compared to SFP+, the choice improves compatibility for users relying on standard RJ45 cabling and avoids the cost of optical transceivers.

On the USB front, the N7 integrates a versatile mix of legacy and next-generation interfaces to accommodate a range of peripheral scenarios. The single USB4 Type-C port supports up to 40Gbps data throughput, enabling fast access to NVMe-class external storage or high-resolution display output via DP Alt Mode. It also opens the door for emerging use cases such as external GPU enclosures, dock expansion, or USB4-to-10GbE adapters—particularly valuable for users running Linux distributions like ZimaOS or Proxmox, where hardware passthrough and device mapping are becoming more accessible.

Three additional USB 3.2 Gen1 (5Gbps) Type-A ports are located on the rear I/O and work as expected for more common devices like USB storage drives, UPS interfaces, or external backup systems. Internally, the board offers a USB 3.0 header for front-panel case ports, a USB 2.0 header for basic boot/recovery drives, and a Type-E header compatible with front-panel USB-C or TPM modules. During testing, USB Ethernet dongles including Realtek-based 2.5GbE and 5GbE models were recognized immediately under supported NAS OS environments, and native USB boot was stable across ZimaOS, UnRAID, and TrueNAS.

Display and peripheral audio output are also included, which broadens the board’s versatility beyond a pure headless NAS application. The board features three display output options: HDMI, DisplayPort, and USB-C via DP Alt Mode, all of which are powered by the integrated Radeon 780M GPU. These outputs can drive up to three displays concurrently, with resolutions up to 4K on all three or up to 8K on select single-display configurations.

This makes the board suitable for tasks like media center builds, HTPC-NAS hybrids, or running direct-access GUIs for NAS software like UnRAID’s web dashboard or Proxmox’s virtual console. The inclusion of these outputs also benefits users setting up the board as a temporary workstation or using the NAS in roles that require visual monitoring, such as security recording or local video playback via Jellyfin. Finally, a 3.5mm combo audio jack is available for users needing direct analog audio output—for example, for alerts, monitoring systems, or simple desktop playback. While not essential for most server roles, these extras enhance the board’s adaptability for multi-role deployments.

N7 AMD 2x 10GbE NAS Motherboard Review – Heat, Power and Speed Tests

The N7 motherboard, powered by the Ryzen 8845HS, exhibits performance characteristics closer to high-end desktop platforms than typical NAS or embedded ITX systems. Under idle conditions with no SATA drives connected, the system consumed around 25W of power—measured with the CPU utilization below 5%, one 10GbE port active but unused, and two NVMe SSDs idle. This baseline power draw is significantly higher than what one would expect from Intel N-series or low-wattage embedded solutions, but within expectations for an 8-core Zen 4 processor with multiple PCIe 4.0 devices powered.

During light workloads—such as file transfers, basic Docker container activity, and periodic system logging—power consumption rose to 35–40W, depending on active network interfaces and connected USB peripherals. Once under sustained load, such as running active VMs, accessing both NVMe drives simultaneously, and saturating both 10GbE ports, power consumption reached 62–64W, and could climb higher when SATA HDDs were connected. With full 8-bay drive setups, users should expect total system draw to increase by an additional 40–80W depending on drive type and workload.

Thermal performance remained acceptable, but adequate cooling is essential. The preinstalled copper heatsink provides passive thermal coverage over the SoC, but a dedicated LGA1700-compatible active cooler is required for stable operation. During high CPU utilization tasks (including transcoding and virtualized workloads), the Ryzen 8845HS reached 75–85°C using a standard Jonsbo low-profile air cooler in a ventilated test chassis. NVMe thermals also hovered between 55–65°C under sustained read/write conditions, especially in the rear-mounted slot with limited airflow.

While the chipset and PCIe controllers did not show signs of throttling, compact case designs with poor airflow could reduce long-term reliability unless additional ventilation or targeted airflow is introduced. Thermal probes placed near the SFF-8643 headers showed localized warmth, but no hotspots significant enough to warrant concern, assuming the system is housed in a well-ventilated NAS chassis.

In real-world bandwidth testing, both 10GbE ports were able to sustain near line-rate transfers using iperf3 and large file transfers via Samba and NFS. When paired with two PCIe Gen 4 NVMe SSDs, the system consistently achieved 5.0–5.1GB/s reads and 4.5–4.6GB/s writes under sequential file operations, using CrystalDiskMark and Linux-based fio. When both 10GbE ports were active and transferring simultaneously, total throughput approached 2.8–3.0GB/s across both interfaces, depending on storage configuration and NIC drivers.

The M.2 slots did not exhibit thermal throttling in short bursts, though write-heavy tasks over time may benefit from passive heatsinks or motherboard padding to manage drive temperatures. Notably, a minor anomaly was observed during direct SSD-to-SSD transfers within the system: despite both NVMe drives supporting Gen 4 x4, inter-drive transfers capped at ~900MB/s, suggesting a potential shared PCIe switch limitation or OS-layer bottleneck. However, this did not impact external transfer speeds or typical NAS operations.

For virtual machines and multimedia, the N7 showed strong capabilities. The Ryzen 8845HS handled 6 mixed windows and ubuntu simultaneous VMs with steady responsiveness and no observable instability in both Proxmox and UnRAID and could very easily have been scaled further, up to double figures with ease. CPU utilization remained below 60% during combined 6xVM and 2x 4K converted Jellyfin media playback testing. The integrated Radeon 780M GPU enabled smooth 1080p and 4K media playback using Jellyfin via hardware-accelerated rendering.

8K native playback was supported, though transcoding large 8K files pushed the CPU above 80% utilization, and real-time conversion proved unreliable. Light 4K transcoding was possible, though not as efficient as Intel Quick Sync or NVIDIA NVENC-based solutions. Still, for native playback and lightweight transcodes in a home or SMB setup, the board performs well. Combined with Docker and AI acceleration for metadata tagging or face recognition, the N7 can act as a capable hybrid NAS/media server platform when deployed with suitable software.

Metric Result
Idle Power Draw ~25W (CPU < 5%, 2x NVMe, 1x 10GbE active, no SATA drives)
Moderate Workload Power ~35–40W (light containers, USB, low network I/O)
Full Load Power Draw ~62–64W (2x 10GbE, NVMe access, active VMs, high CPU usage)
10GbE Performance ~2.8–3.0GB/s aggregate (2x 10GbE fully saturated via SMB/NFS)
NVMe Sequential Read/Write Read: 5.1GB/s, Write: 4.6GB/s (Gen 4 SSDs, CrystalDiskMark/fio)
Internal NVMe-to-NVMe Transfer ~800–900MB/s max observed (possible shared path or kernel bottleneck)
Thermal Range (CPU) 75–85°C under load with air cooler
Thermal Range (NVMe) 55–65°C sustained load (rear slot runs warmer)
VM Performance 5–6 simultaneous VMs stable (UnRAID, Proxmox)
Media Playback (Jellyfin) Smooth 1080p/4K native, limited 8K transcoding

N7 AMD 2x 10GbE NAS Motherboard Review – Verdict and Conclusion

The MINIROUTE N7 (also known as the CWWK N7) establishes itself as one of the most functionally complete and performance-oriented Mini-ITX NAS motherboards currently on the market, delivering a dense hardware feature set typically reserved for much larger or more expensive systems. Featuring the AMD Ryzen 8845HS with Zen 4 architecture, dual 10GbE ports, PCIe Gen 4 expansion, and native support for up to eight SATA drives via onboard SFF-8643, the N7 is aimed squarely at users building serious NAS and virtualization setups from the ground up. The inclusion of dual NVMe slots, USB4 support, and bifurcation-ready PCIe x16 further positions this board as a future-ready platform for mixed storage, networking, and container workloads. Unlike many boards in this category, which sacrifice PCIe allocation or require additional HBAs for full drive connectivity, the N7 manages to deliver everything natively within a compact 17 cm × 17 cm layout. Compatibility with UnRAID, Proxmox, TrueNAS SCALE, and ZimaOS means that users have a wide selection of operating environments to choose from, whether prioritizing containerized applications, VM infrastructure, or ZFS-based data integrity.

However, the board’s capability comes with caveats that will be more apparent to experienced system builders. Idle and load power consumption are significantly higher than N-series Intel or ARM SoCs, which may not suit deployments aiming for low-energy, 24/7 operation with minimal thermal output. Thermal demands on the CPU and M.2 storage require effective active cooling, particularly in enclosed NAS cases with limited airflow. Officially, there is no ECC memory support, and although the board recognizes ECC DIMMs in BIOS and some operating systems, the absence of validated error correction will deter users in environments where data integrity is mission-critical. Additionally, while the SFF-8643 layout enables clean cabling for up to eight SATA drives, it assumes familiarity with breakout cables or SAS-style enclosures—potentially adding complexity for users migrating from consumer-oriented boards with standard SATA headers. That said, for advanced NAS builders, home lab enthusiasts, or small-scale professionals seeking a board that combines workstation-grade power, native 10GbE networking, and dense storage connectivity, the N7 represents a well-balanced and highly flexible foundation. Its price may be higher than entry-level ITX boards, but for those seeking high-throughput and virtualized workflows in a compact format, it is one of the most capable DIY platforms currently available.

Where to Buy?
  • Amazon US CWWK N7 NAS MoBo+CPU for $489 – HERE
  • CWWK N7 NAS Board £476 on Amazon UK – HERE
  • CWWK N7 8845HS Board €559 on Amazon DE – HERE
  • N7 8845HS 2x 10GbE NAS Board on Amazon ($489) HERE
  • N7 8845HS + Jonsbo Fan 2x 10GbE NAS Board on Amazon ($509) HERE

PROs of the N7 NAS Motherboard CONs of the N7 NAS Motherboard
  • High-Performance CPU: Ryzen 8845HS offers 8 cores, 16 threads, and strong single/multi-thread performance suitable for VMs and containers.

  • Dual 10GbE Ports: Independent 10GbE NICs with full PCIe Gen 4 ×1 allocation allow high-throughput networking without contention.

  • Support for 8 SATA Drives: Native 8-bay SATA support via dual SFF-8643 eliminates the need for add-on HBA cards in most NAS builds.

  • Dual NVMe Gen 4 Slots: Two M.2 2280 slots support full PCIe Gen 4 ×4 speeds for fast boot, cache, or tiered storage.

  • PCIe Gen 4 x16 Slot: Full-length slot with x8 signal and BIOS bifurcation enables GPU, RAID, or multi-NVMe card expansion.

  • USB4 Support: Includes one 40Gbps USB-C port for high-speed external storage or passthrough options in advanced OS setups.

  • Triple Display Outputs: HDMI, DisplayPort, and USB-C (DP Alt Mode) support up to 8K for local GUI or media server applications.

  • Compact ITX Layout: All features integrated into a 17cm × 17cm form factor, compatible with standard NAS and SFF cases.

  • No Official ECC Support: ECC DIMMs are detected but error correction is unverified, limiting its appeal in critical data environments. (correction, 8845HS Pro CPU DOES support ECC, not this one)

  • Moderately High Power Consumption: Idle power (~25W) and load (>60W) exceed typical low-power NAS boards, requiring active cooling.

  • SFF-8643 Complexity: Requires breakout cables and familiarity with SAS-style connectors, which may confuse first-time NAS builders.

 

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

CWWK M8 N150/N355 10Gbe NAS Board Combo Review

CWWK M8 MITX 10GbE NAS Motherboard & CPU Review

The CWWK M8 NAS motherboard, equipped with either the Intel Twin Lake N150 or N355 processor, is a compact Mini-ITX platform aimed at advanced home NAS builders and small office users looking for a cost-effective alternative to branded NAS systems. Measuring just 17 x 17 cm, it combines several high-end features such as an onboard 10GbE RJ45 LAN (via the AQC113C controller), dual 2.5GbE Intel i226-V ports, and support for up to eight SATA drives through dual SFF-8643 ports. The board also integrates two M.2 NVMe slots, a DDR5 SO-DIMM memory slot supporting up to 48GB, and a PCIe Gen3 x1 slot for modest expansion. Unlike many low-power ITX boards, the M8 includes support for Wake-on-LAN, PXE boot, and hardware monitoring, which makes it a viable candidate for 24/7 operations and remote deployment scenarios. With its efficient lane distribution—critical for balancing 10GbE, NVMe, SATA, and PCIe simultaneously—it delivers a level of I/O flexibility not commonly found at this price point, particularly in the sub-$300 range.

CWWK M8 10GbE NAS Mobo – Quick Conclusion

The CWWK M8 NAS motherboard strikes a practical balance between performance, expandability, and power efficiency, making it a compelling choice for DIY NAS builders looking for 10GbE capability without the complexity or cost of larger platforms. With support for up to eight SATA drives via dual SFF-8643 connectors, dual NVMe slots, and a DDR5 SO-DIMM socket (up to 48GB), it delivers a surprising level of storage flexibility in a compact Mini-ITX form factor. Performance across the 10GbE port is strong—achieving near-saturation read speeds and respectable write throughput—while NVMe and SATA access remain consistent thanks to a careful PCIe lane allocation strategy. Power draw remains modest, even when fully populated with drives and expansion cards, reinforcing its suitability for 24/7 deployments. However, limitations like Gen3 x1 NVMe speeds, a single RAM slot, and shared PCIe/E-Key lane usage should be considered by those seeking maximum expansion or high-end performance. Still, for its price, pre-installed CPU, and strong open-source OS compatibility, the M8 offers an unusually capable base for home servers, backup targets, or even Plex and Proxmox environments.

BUILD QUALITY - 9/10
HARDWARE - 9/10
PERFORMANCE - 7/10
PRICE - 10/10
VALUE - 10/10


9.0
PROS
👍🏻10GbE RJ45 port (AQC113C) with full Gen3 x2 bandwidth
👍🏻Dual 2.5GbE Intel i226-V ports with wide OS compatibility
👍🏻Supports up to 8 SATA drives via dual independent SFF-8643 ports
👍🏻Includes 2× M.2 NVMe 2280 slots, suitable for cache or boot use
👍🏻Very low power draw (~20W under load with 10g+2xM.2, ~31W idle fully populated with HDDs)
👍🏻Compact Mini-ITX form factor with well-organized layout
👍🏻Exceptional Price vs H/W Level
👍🏻Broad OS support (TrueNAS, Unraid, PVE, Linux, Windows, etc.)
CONS
👎🏻PCIe slot and M.2 E-Key share a lane—only one usable at a time
👎🏻M.2 NVMe slots limited to PCIe Gen3 x1 speeds
👎🏻Single DDR5 SO-DIMM slot (no dual-channel support)

Where to Buy?
  • CWWK M8 10GbE NAS Board on Amazon (£174) HERE
  • CWWK M8 10GbE NAS Board on AliExpress ($166) HERE
  • N355 CWWK NAS Motherboard on AliExpress ($249) – HERE

CWWK M8 10GbE NAS Mobo – Design

The physical design of the CWWK M8 motherboard is centered around the Mini-ITX standard, maintaining a compact 17 x 17 cm footprint that caters to space-conscious NAS builds. Despite its small form factor, the layout is methodically structured to maximize accessibility and airflow. Key components such as the dual SFF-8643 ports, NVMe slots, and RAM socket are positioned for easy cable routing and minimal overlap.

The CPU arrives pre-installed with a low-profile ball-bearing cooler, which is sufficient for the low 6W TDP of the N150 processor. There’s also a system fan header onboard with PWM support, allowing for basic thermal management in enclosed NAS chassis. The board is finished in a neutral white PCB, aligning with recent CWWK trends that blend aesthetic minimalism with function-first engineering.

Storage expansion is one of the most defining elements of the M8. It features dual SFF-8643 ports that, with breakout cables, provide connectivity for up to eight SATA III (6Gbps) drives.

These connectors are routed through independent ASM1164 controllers, each on a dedicated PCIe Gen3 x1 lane, ensuring that drive traffic is not bottlenecked through a single controller.

This separation also means users can confidently deploy SSDs or mixed SSD/HDD arrays without major performance drops under load. The board supports RAID configurations at the OS level via TrueNAS or Unraid, and is capable of delivering reliable throughput for multi-drive setups including RAID-Z, RAID5, or JBOD.

In addition to traditional SATA storage, the board includes two M.2 NVMe 2280 slots, each operating at PCIe Gen3 x1. While this limits peak performance to around 900MB/s per slot, it is sufficient for cache drives or SSD-based boot volumes, especially in NAS environments where latency and parallel IOPS matter more than raw sequential throughput. The placement of the NVMe slots, one top-side and one underside, helps distribute heat and gives builders flexibility in cooling strategy. Both slots are directly accessible, and installation doesn’t require removing other components, which is particularly useful during upgrades or replacements.

Storage scaling is enhanced through the modularity of the board’s SFF-8643 interfaces. As discussed in your review, these ports can be adapted not just to standard SATA breakouts but also to additional M.2 or U.2 devices with the correct adapter cards. This creates potential for hybrid NAS setups—using SATA for bulk data storage and NVMe for hot data or VM usage. Such versatility in drive mapping is rarely offered at this price point, and makes the board viable not only for home media servers but also for lab environments or light virtualized storage nodes.

One lesser-known but practical addition is the inclusion of a MicroSD (TF) slot on the PCB. While it’s not ideal for installing major OS platforms like TrueNAS Core, it can be useful for loading bootloaders such as Unraid or for system config backups. Importantly, the TF slot is recognized natively by most operating systems and appears as a usable storage device without requiring extra drivers. It also enables simple out-of-band recovery or local snapshot scripts in more advanced workflows. Combined with the available internal USB port, the board allows multiple low-impact boot or recovery paths to coexist alongside primary storage deployments.

CWWK M8 10GbE NAS Mobo – Ports and Connections

The CWWK M8 motherboard is equipped with a well-rounded selection of external and internal I/O ports that support a broad range of NAS and server use cases. Most notably, it includes one 10GbE RJ45 port powered by the AQC113C controller and two additional 2.5GbE ports via Intel i226-V chips.

These networking options allow the board to operate in multiple roles simultaneously, such as high-speed file sharing over 10GbE while maintaining service management or redundancy via the dual 2.5GbE ports. The inclusion of Intel network controllers ensures wide compatibility with open-source operating systems like TrueNAS and Unraid, as well as ESXi and PVE, making it a suitable base for software-defined networks, VLAN tagging, or bonded interface configurations.

On the USB front, the M8 provides a combination of high-speed and legacy options. It includes 1× USB Type-C (10Gbps) and 1× USB 3.2 Gen2 Type-A (10Gbps) ports for external storage or fast USB peripherals. There are also 2× USB 2.0 Type-A ports located at the rear I/O and an internal USB 2.0 header, which is useful for OS boot drives such as Unraid.

Internally, the board also features a USB 3.0 header and a Type-E header, allowing front-panel USB 3.x support if the chassis includes such connectors. These ports give builders the flexibility to attach boot media, backup targets, or even USB-based UPS management tools without additional hardware.

For video output and direct display use, the M8 includes 1× HDMI 2.0 and 1× DisplayPort 1.4, both capable of 4K@60Hz output. These are connected via the integrated UHD graphics included with the N150/N355 CPU. While these outputs are generally not essential in a headless NAS environment, they provide value in cases where the system is used as a hybrid HTPC/NAS, or when diagnostics and BIOS access are needed without SSH or remote management tools. The GPU is also supported for hardware video decoding, making the board a viable base for light Plex or Jellyfin deployments that rely on integrated graphics acceleration.

Internally, the board features several headers that further expand its flexibility. Alongside the previously mentioned USB and fan headers, there’s an M.2 E-Key slot for wireless modules, which shares PCIe lanes with the x1 PCIe slot and cannot be used simultaneously. The board also includes an SD card (TF) slot which appears natively in supported OSes—suitable for bootloaders or small backup tasks.

While not suited to high-throughput use, it does provide an alternative storage option in embedded or recovery scenarios. The arrangement and accessibility of these ports are well considered for such a small form factor, ensuring that builders can access almost all essential functionality without relying on riser boards or USB hubs.

Interface Type Details
Ethernet Ports 1× 10GbE RJ45 (AQC113C), 2× 2.5GbE RJ45 (Intel i226-V)
USB Ports (Rear) 1× USB 3.2 Gen2 Type-A (10Gbps), 1× USB-C (10Gbps), 2× USB 2.0 Type-A
USB Ports (Internal) 1× USB 2.0 (boot drive), 1× USB 3.0 header, 1× USB 3.0 Type-E header
Display Outputs 1× HDMI 2.0, 1× DisplayPort 1.4 (both support 4K@60Hz)
PCIe Slot 1× PCIe Gen3 x1 (x4/x8 slot compatible, shared with M.2 E-Key)
M.2 Slots 2× M.2 2280 NVMe (PCIe Gen3 x1), 1× M.2 E-Key for WiFi/BT
SD Card Slot 1× TF (MicroSD) slot (appears as storage device)
Fan and Headers 1× PWM fan header, various USB/F_USB headers for front I/O

CWWK M8 10GbE NAS Mobo – Internal Hardware

At the heart of the M8 motherboard lies a choice between two Intel Twin Lake processors: the N150 and the N355. The N150 is a quad-core, four-thread CPU with a base architecture derived from the Alder Lake-N family, running at up to 3.6GHz and featuring a modest 6MB cache. It operates at a remarkably low TDP of 6W, making it suitable for passive or semi-passive cooling environments.

The N355, on the other hand, doubles the thread count and bumps performance further, albeit at a slightly higher price. Both CPUs are pre-soldered to the board and arrive with a compact, ball-bearing fan assembly that supports quiet, efficient cooling. These processors are not meant for heavy computation but offer enough power for file server duties, light containerization, and even modest Plex media serving—with the N150 proving capable of 4K playback in testing.

Memory support is handled via a single DDR5 SO-DIMM slot, officially supporting up to 48GB at 4800MHz. While dual-channel operation is not available, DDR5’s higher base bandwidth helps compensate for this limitation in real-world usage. The board accepts standard non-ECC modules and will clock down any faster memory to the platform’s 4800MHz limit.

For NAS and virtualization users, this constraint is acceptable, though power users may note that memory upgrades are capped to a single slot. That said, 32GB or 48GB configurations are more than adequate for common use cases like running TrueNAS Scale with Docker containers, or spinning up a few VMs in Proxmox.

The board’s PCIe lane distribution is particularly deliberate given the constraints of the Twin Lake architecture, which provides just 9 usable PCIe lanes. Despite this, the M8 balances connectivity by allocating PCIe Gen3 x2 bandwidth to the 10GbE port, ensuring full 10Gbps throughput with bandwidth overhead. The SATA controllers each receive dedicated PCIe Gen3 x1 lanes, and each M.2 NVMe slot is similarly mapped at x1 speed.

The remaining lane is shared between the M.2 E-key (for Wi-Fi/BT modules) and the physical PCIe x1 expansion slot. This means that users must choose between Wi-Fi upgrades or additional PCIe peripherals—a typical tradeoff on ITX boards, but worth noting during build planning.

From a system management perspective, the board supports UEFI-only boot modes and includes features such as Auto Power-On, Scheduled Power-On, PXE boot, Wake-on-LAN, and Secure Boot, making it suitable for remote deployment or integration into managed environments. The board includes thermal monitoring via BIOS and OS-level tools, with fan control limited to one system fan header supporting PWM. These features, while basic, are sufficient for home server use or edge deployment in micro data centers. The compact ITX layout also makes the board a candidate for embedded use in custom NAS chassis or OEM enclosures with constrained airflow or proprietary mounting.

Component Details
CPU Options Intel N150 (4C/4T, 3.6GHz, 6W TDP), Intel N355 (8C/8T, higher performance)
Memory 1x DDR5 SO-DIMM, up to 48GB (4800MHz), non-ECC
Chipset/Lanes Intel Twin Lake SoC, 9 PCIe Gen3 lanes total
NVMe Storage 2x M.2 2280 NVMe (PCIe Gen3 x1 each)
SATA Support 2x SFF-8643 (8x SATA III via breakout cables, each on ASM1164 controller)
PCIe Expansion 1x PCIe Gen3 x1 slot (shared with M.2 E-Key)
WiFi Module Slot 1x M.2 E-Key (2230) for Wi-Fi/BT (shares lane with PCIe slot)
Boot Features UEFI-only, Auto Power-On, Wake-on-LAN, PXE boot, Secure Boot
Fan Support 1x PWM system fan header, bundled CPU fan

CWWK M8 10GbE NAS Mobo – Performance and Power Tests

During benchmarking and real-world tests, the N150-based M8 motherboard demonstrated performance levels consistent with expectations for an ultra-low-power NAS platform. Sequential read speeds over the 10GbE interface approached saturation during synthetic ATTO Disk Benchmark tests, particularly with a 256MB block size, where throughput consistently exceeded 950MB/s.

Write performance, however, plateaued slightly lower, averaging between 650–700MB/s for 1GB and 4GB file tests. These figures are typical for systems utilizing Gen3 x1 NVMe SSDs and efficiency-focused CPUs like the N150, where write-intensive operations are more limited by CPU capability than disk throughput. Larger transfers or workloads involving compression will see slightly more variation, but in most scenarios, read performance remained stable and consistent.

Using a RAID 1 array of Seagate IronWolf drives connected via the dual SFF-8643 SATA ports, the board achieved average write speeds of 550–580MB/s, with occasional peaks in read performance reaching up to 800MB/s, though these were not sustained.

These results reflect the benefit of having each SATA group routed through a separate ASM1164 controller, ensuring that bandwidth isn’t choked under RAID configurations or multi-drive reads. In practical terms, this makes the board well-suited for file-serving tasks, Time Machine backups, or media library hosting, with no obvious contention across interfaces during simultaneous read/write operations.

NVMe performance was constrained by the PCIe Gen3 x1 link per M.2 slot, which limited theoretical throughput to under 1GB/s. Tests confirmed read speeds of around 720MB/s and write speeds of approximately 520MB/s in sustained transfers. While not ideal for high-performance VM storage or video editing scratch disks, these speeds are more than adequate for cache duties or container storage. Importantly, the board maintains predictable performance across both NVMe slots, and thermals were manageable under active load without throttling, thanks in part to the pre-attached CPU cooler and accessible airflow pathways on the board’s surface.

In terms of power efficiency, the system consumed approximately 19–20W under load when configured with the N150 CPU, 8GB of DDR5, two NVMe SSDs, and a 10GbE connection in active use. When idle but fully populated with four SATA drives and an expansion card installed (but unused), power draw settled at around 31.4W. This confirms the board’s suitability for 24/7 operation without requiring high-capacity PSUs or custom thermal management.

For edge computing, offsite backup, or low-power homelab deployments, this balance of power efficiency and consistent I/O throughput is a key strength of the M8.
Test Category Result (N150 Model)
10GbE Read (ATTO, 256MB) ~950MB/s (near saturation)
10GbE Write (1–4GB) ~650–700MB/s
RAID 1 HDD (SATA) Write: 550–580MB/s, Read Peak: up to 800MB/s (occasional spikes)
NVMe (Gen3 x1) Read: ~720MB/s, Write: ~520MB/s
Power Draw (Load) ~19–20W (N150, 2× NVMe, 10GbE active)
Power Draw (Idle, full config) ~31.4W (4× HDD, PCIe card, NVMe, no I/O)
Thermals Stable under load; no active throttling observed

CWWK M8 10GbE NAS Mobo – Verdict and Conclusion

The CWWK M8 motherboard delivers a rare combination of high-speed networking, broad storage expandability, and low power consumption, all within a Mini-ITX footprint. It manages to balance PCIe lane allocation across 10GbE, dual NVMe, and eight SATA drives without compromising basic performance, thanks to deliberate hardware pairing and thoughtful board layout. The use of separate SATA controllers, a well-provisioned 10GbE controller on Gen3 x2 lanes, and native UEFI support reflects a clear intent to make this a serious option for NAS enthusiasts and advanced home users. Its ability to sustain near-saturation speeds on the 10GbE connection and provide usable NVMe throughput makes it a capable base for TrueNAS, Unraid, or Proxmox environments—whether for home backup, Plex media hosting, or light VM workloads.

However, there are trade-offs. The limited PCIe expandability, single RAM slot, and Gen3 x1 constraints on NVMe performance may not meet the needs of high-end workstation builders or enterprise deployments. Additionally, the shared PCIe lane between the M.2 E-key and the PCIe slot limits simultaneous use of both interfaces, which could affect those hoping to add both Wi-Fi and a PCIe peripheral. Still, for its price point and target use case, the M8 delivers well above average. It avoids many of the bottlenecks seen in competing low-power boards and manages to do so at under $300 with a pre-installed CPU. For users building a power-efficient, high-bandwidth DIY NAS with flexible drive options and capable base specs, the CWWK M8 stands out as a strong contender.

 

Where to Buy?
  • CWWK M8 10GbE NAS Board on Amazon (£174) HERE
  • CWWK M8 10GbE NAS Board on AliExpress ($166) HERE
  • N355 CWWK NAS Motherboard on AliExpress ($249) – HERE

Pros Cons
10GbE RJ45 port (AQC113C) with full Gen3 x2 bandwidth PCIe slot and M.2 E-Key share a lane—only one usable at a time
Dual 2.5GbE Intel i226-V ports with wide OS compatibility M.2 NVMe slots limited to PCIe Gen3 x1 speeds
Supports up to 8 SATA drives via dual independent SFF-8643 ports Single DDR5 SO-DIMM slot (no dual-channel support)
Includes 2× M.2 NVMe 2280 slots, suitable for cache or boot use
Very low power draw (~20W under load, ~31W idle fully populated)
Compact Mini-ITX form factor with well-organized layout
Pre-installed CPU and active cooling fan included
Broad OS support (TrueNAS, Unraid, PVE, Linux, Windows, etc.)

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Are Chinese NAS Devices Safe? Let’s Discuss…

Are Chinese DIY NAS Devices Worth Your Time, Money, and Data?

Over the last 2 years, I have discussed at length multiple different Chinese-built NAS solutions in one form or another. From DIY NAS motherboards from brands like Topton and CWWK to pre-built solutions arriving both with and without NAS software from brands like Ugreen, Terramaster, Aoostar, and more. Thanks to the miniaturisation and power efficiency improvements in a multitude of different kinds of PC hardware, a lot of brands originally developing mini PCs, tablets, and laptops have started including developments towards NAS systems in their portfolios. Some brands, like Ugreen and Terramaster, have gone into this with significantly more energy than others, including and further developing their very own NAS software that is included with the hardware. But regardless of whether you are looking at a Chinese DIY NAS that does or does not include its software, it still raises the question of whether these solutions are worth your time and money. Are they as reliable as some of the long-established players providing solutions from Taiwan or the US? Can you trust it with your data? Let’s discuss.

Chinese NAS Brands That I Recommend

These are the brands I would personally recommend if you are considering a China-based NAS brand. These are 6 brands that I have used many of their products (NAS and others) that I have found the best experiences with, as well as, on balance,e the best online support and communication. No brand is perfect, and look hard enough and you will find good and bad on any brand, really, but these are six examples of brands that stand out from the others.

Buy Here on AmazonVisit Their Own Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on Amazon


The TL;DR – Are Chinese DIY NAS Devices Worth It?

  • Chinese NAS popularity is rising due to affordability, broader hardware variety, and greater accessibility in Asia.

  • Brands like Ugreen and Terramaster have built their own NAS software, adding credibility to their name in the eyes of consumers and long-term support potential that a lot of other options seem to tangebly lack.

  • Mini PC brands (e.g., Minisforum, GMKTec) are repurposing their platforms into NAS devices, leveraging existing consumer trust.

  • Many Chinese NAS systems are hardware-only, allowing users to install platforms like TrueNAS or UnRAID.

  • DIY-friendly: Chinese NAS devices often support third-party OS installs without voiding warranty—unlike many Western brands.

  • Hardware value: You can expect up to 25–30% lower prices compared to similar US/Taiwan/Japan-made systems.

  • Tech culture: China has a more tech-literate consumer market, visible in high street and airport advertising.

  • Security concerns exist, largely due to past incidents of spyware or malware embedded in hardware from some Chinese vendors.

  • Using trusted open-source OS platforms can reduce risks—but can’t fully eliminate them if vulnerabilities are in firmware/hardware.

  • Not all Chinese brands are equal—research brand background, online presence, and operational transparency.

  • Some no-name brands just rebrand OEM hardware (e.g., from CWWK), but offer poor support and minimal warranty backing.

Support issues include:

  • No regional presence

  • Language/cultural barriers

  • Long RMA turnaround

  • Tax/import delays for returns

Brands with better reputations for support include: CWWK, Jonsbo, and Terramaster.
Be wary of AliExpress-only brands with no official website or global support—these often lack accountability.

Ultimately: Yes, you can buy a NAS from China—just stick to reputable brands, do your research, and stay security-conscious.

$169 n150 4x M.2 NVMe SSD NAS – The GMKTek G9


Why Have Chinese NAS Systems Rapidly Grown in Popularity?

The easy answer to this would be to say that they tend to be a lot cheaper than NAS products that are built in the US, Europe, or surrounding Eastern countries like Taiwan or Japan. Indeed, that is true, and you tend to find that NAS systems made in China are typically offered at great value price points and hardware value compared to anywhere else in the world. However, the popularity of Chinese NAS systems is actually a little bit more nuanced and about a lot more than simply money.

The UGREEN DXP NASync Series Now Globally Available

For a start, some of the brands that are currently moving into providing their own network-attached storage solutions are brands that already had a well-established presence in homes and offices around the globe for other peripherals. A great example of this would be Ugreen. Ugreen has provided accessories for PCs, power adaptors, and portable docking stations for quite a few years and is probably one of the most recognisable names for this kind of technology from China around the world.

The Aoostar WTR N305 4 Bay NAS Drive

Therefore, in early 2024, when the brand announced it was entering the world of NAS in the Western world, the brand already had a fairly solid and well-documented audience in place. That is likely why the brand, although still pretty good value, is actually slightly more expensive than the majority of other Chinese NAS brands.

The Terramaster F6-424 Max NAS – 2x 10GbE, 2x Gen 4×4 M.2 NVMe & Intel i5 CPU

Alternatively, you have brands like Terramaster, who have been in the network-attached storage industry for over half as long as the likes of QNAP and Synology, and during that time have built up a fairly solid audience base long before the arguably heavy influx of smaller, lesser-known brands entering the world of NAS from China.

The Terramaster F6-424 Max NAS – 2x 10GbE, 2x Gen 4×4 M.2 NVMe & Intel i5 CPU

Chiefly purchased for its hardware until now, Terramaster is a brand that has a fairly comprehensive and well-detailed software platform in TOS. Of course, both of these brands provide much better value for money than alternatives in the market from other countries, but in a lot of cases, people are purchasing these solutions for more than just the bottom-line price.

The Lincplus Lincstation N1 & N2 4x M.2 and 10GbE NAS

Alternatively, there is the now heavily saturated market of mini PC vendors who have modified a lot of their existing production and systems to now leverage towards storage. In many cases, some of these brands—such as Minisforum and GMKTec—already have a healthy relationship with consumers thanks to their mini PCs, and that brand awareness has clearly transferred over to NAS products.

The Minisforum N5 Pro NAS – AMD i9 HX370 / ECC Memory / 10+5GbE / 5 SATA and 3 M.2 NVMe

The other thing that makes these Chinese NAS products very appealing to new and even old NAS buyers is that a lot of them arrive without software included. This allows users to get just the hardware at a lower price and then go ahead and install software such as TrueNAS or UnRAID, because they want to take advantage of those more flexible (if slightly more intimidating) platforms. The majority of NAS products that arrive from other countries tend to arrive with their own NAS software included and, more often than not, do not allow the warranty to continue being supported if you install a third-party operating system. Whereas practically all NAS products that are developed in China tend to allow you to use third-party operating systems—even when they include their own OS (again, see Terramaster and Ugreen).


What Are the Benefits of Chinese NAS Systems?

Ultimately—and it’s kind of a shame that this is the headline here—but it is, of course, that NAS systems from China will generally give you much better hardware at a lower price tag. That isn’t to say that these systems are always going to be universally the lowest price, but it is simply that the average price tag of the system configuration and hardware, compared across multiple regions, will generally always end in the product being cheaper when it is manufactured in China.

UGREEN DXP8800 PLUS NAS – 10GbEx2, Intel i5 CPU, Gen 4×4 NVMe

More often than not, whether you’re looking at a fairly modest entry-level Intel Celeron / Intel Alder Lake / Intel Twin Lake-based NAS system or scaling it up all the way towards Intel Core and AMD Ryzen systems, you will tend to find that NAS solutions built in China are as much as 25 to 30% lower in price than those made in the rest of the world.

The UnifyDrive UP6 6x NM.2 NVMe SSD Portable NAS

I guess you could also add that if you are based in the Eastern part of the world, there are also tremendous benefits to these solutions being so readily available and accessible. Indeed, on a recent trip to Shenzhen, I noticed how there were significantly more DIY NAS solutions available on the high street and in the tech malls than anywhere else in the world. A big part of this is that the general average standard understanding of tech hardware is higher out there than in a lot of Western regions. That isn’t to say that we don’t have a tremendously high volume of users who understand this kind of technology in the US and Europe, but the way it is framed to the consumer is notably different.

So, for example, if you walk around an airport in China, Hong Kong, or Taiwan, you will often see advertisements of a pretty technical nature with regard to CPUs and graphics cards on the back of trolleys, billboards, and on the sides of public vehicles. Whereas in America and Europe—although this is still not completely absent—adverts are much more focused on the end product, such as phones, tablets, laptops, and domestic client hardware.


Why Are People So Concerned About Chinese NAS System Security?

It is a pretty bloody valid concern! In recent years, tensions between large countries with regards to trade have been on the rise—one of the biggest being the US–China trade war, which, although it has ebbed and flowed over the last seven or eight years, is actually something that has existed for a few decades now. It largely boils down to the import and export of this kind of technology. However, the breaking point came when several Chinese products were found to contain spyware and malware that was hard-baked into the hardware and allowed for remote collection of user data. Numerous brands were implicated, and the fact that there is a degree of ambiguity between numerous Chinese brands in the eyes of the world—regarding how many of them cross over at the point of manufacture and how many of them are on the same production line filtering toward various brands—all added up to increased tensions and, eventually, several companies and organisations being barred from sale in the US.

Sourcehttps://www.computerweekly.com/news/366622023/NCSC-issues-warning-over-Chinese-Moonshine-and-BadBazaar-spyware/

How much this has been respected by certain Chinese players in the past—I am not going to blanket-tarnish all Chinese brands with this, as that would be both unfair and hugely incorrect. Nevertheless, a small group of bad apples has certainly soured the mood for many when it comes to purchasing Chinese NAS products in terms of security, especially when it is noted that these systems will be on 24/7, contain all of your data, and, in many cases, are directly or indirectly connected to the internet depending on your own personal setup.

Source: https://www.security.com/threat-intelligence/us-china-espionage/

This is one of the main reasons why a lot of users will purchase a Chinese NAS product specifically if it does not arrive with any kind of included operating system. A lot of users would rather trust established and Western-orientated NAS brands such as TrueNAS and UnRAID, as these have a proven track record of firmware updates and security tools, but also have recognised vulnerability and security disclosure programs that they work with to be held accountable in the event of any security incident being recognised. Nevertheless, on numerous occasions, it has been noted that security vulnerabilities—and the aforementioned spyware, when it has been recognised—have been hard-baked into the hardware components and physical controllers, which means that regardless of the NAS software you use, some of these devices still have the potential to contain security vulnerabilities.

Now, playing devil’s advocate, it could actually be possible for any hardware manufacturer in any country in the world to implement these kinds of security breach methodologies into their hardware. When you really break it down, the architecture of a NAS device—regardless of where it is built in the world—is going to be largely similar to that of a standard PC, and therefore the opportunities for exploitation and manipulation are still going to be on the table. Nevertheless, although it has been recognised that different regions of the world have had their own bad actors who have introduced vulnerable devices into the market unbeknownst to end users, there is still no avoiding that the lion’s share of the manufacturers found culpable for this have been based in China.

However, we also have to be slightly reasonable in that, given the larger share of hardware that is manufactured and distributed from China, then statistically, they are always going to have the larger number of incidents. The propaganda machine of numerous nations will always be at play to present a particular picture of the safety of imported devices, but all that aside, it does still seem that—despite instances of systems with inbuilt vulnerabilities decreasing all the time—they do crop up more frequently in products made in China than anywhere else in the world.

Herehttps://www.tomshardware.com/desktops/mini-pcs/mini-pc-maker-ships-systems-with-factory-installed-spyware-acemagic-says-issue-was-contained-to-the-first-shipment/

Should this be a reason to completely disregard purchasing a NAS solution from China? No, I don’t think so. I think it is a good reason to investigate the brand or organisation that you’re choosing to purchase from. I think it is a good reason to investigate how long a company has been in operation and to find out more about their offices and operations before making a purchase. And I do think it is all the more reason why organisations should not automatically assume that any piece of hardware from anywhere in the world is automatically the most secure out of the box, and should be implementing their own firewalls, VPNs, authentication methods, and security protocols regardless.


Remote Accessing My Chinese NAS – Alternatives to the Host OS

If you’re hesitant to use the default remote access features provided by your Chinese-made NAS due to privacy, transparency, or security concerns, you’re not alone—and thankfully, there are much safer and more trusted options available.

One of the most popular and user-friendly tools in this space is Tailscale, a modern mesh VPN built on WireGuard. Tailscale allows you to securely access your NAS (or any other device on your network) from anywhere in the world—without the need for risky port forwarding, dynamic DNS, or vendor cloud logins. With just a few clicks, you can create a private, end-to-end encrypted network between your NAS, phone, tablet, and computers, all managed via a clean web dashboard. It works across firewalls, NAT, and even CGNAT (carrier-grade NAT), which makes it ideal for less technical users looking for peace of mind when accessing their files remotely.

For those who want more customization or are working in slightly more advanced environments, there are other powerful self-hosted or cloud-assisted VPN solutions worth considering. Tools like ZeroTier allow for flexible, programmable virtual networks with global peer-to-peer routing. Meanwhile, OpenVPN and WireGuard (standalone) offer rock-solid, time-tested security for users comfortable with deploying and managing their own VPN servers. These services can be installed directly on your NAS or hosted on another home server or Raspberry Pi on the same network, offering complete control over who gets access and how. If you’re running TrueNAS, UnRAID, or even Debian/Ubuntu-based DIY NAS software, many of these can be installed natively or through Docker containers. This means you can completely bypass the vendor-supplied cloud services, eliminating a major attack surface while retaining secure access from anywhere.

Here are some of the most reliable and widely recommended remote access alternatives:

  • 🔒 Tailscale – Simple, secure mesh VPN using WireGuard; ideal for non-technical users

  • 🌐 ZeroTier – Virtual network overlay with programmable access control and P2P routing

  • 🔐 WireGuard (standalone) – Lightweight, fast, and secure VPN for advanced users

  • 🧰 OpenVPN – A well-established, highly configurable VPN solution

  • 🐳 Dockerized Access Tools – Solutions like Headscale (Tailscale self-hosted), PiVPN, or Cloudflare Tunnel

  • ☁ Cloudflare Tunnel (Argo Tunnel) – Secure reverse proxy with public access protection

  • 🧠 FRP (Fast Reverse Proxy) – Lightweight self-hosted tunnel service often used in Chinese networks

  • 📱 Syncthing – Peer-to-peer file sync tool for remote file access without VPN (for specific folders)

Using any of these tools, you can confidently disable or ignore the default remote access features provided by your NAS vendor and instead implement a hardened, trusted, and fully auditable solution. In doing so, you’re minimizing potential exposure, maintaining privacy, and ensuring that your remote access setup is under your control—not in the hands of a third-party vendor.


Should Users Be Concerned About Support?

Alongside the ever-present concerns around security, the other big issue that users tend to mention about purchasing Chinese NAS products is to do with support. It’s not unusual for a product or solution that you purchase in the market to not have a local or regional office that you can talk to in the event of hardware faults or software difficulties. Just because a product is manufactured in China doesn’t mean it’s the only one that suffers from the geographical hurdles of purchasing a system built in a completely different country than your own.

For example, there are plenty of American manufacturers that do not have any regional offices in Europe, and most support is provided remotely. In those cases, what puts support for products made in China into a different category for many is:

  1. Language and cultural differences in communication between end users and the brand, and

  2. The logistical difficulties of replacing a malfunctioning device with a replacement or repair.

Most of us are quite familiar with—and are happy to accept—that issues occur in the day-to-day operations of most large-scale mass manufacturing production lines. Even high production lines with a 0.01% failure rate, once you break into the million units, are still going to result in a handful of users who might receive a unit that is less than fully operational. But alongside the delays of swapping a bad device for a good one, other hurdles such as time zone differences and potential tax issues upon devices travelling internationally need to be considered. Many of these issues are not any one country’s fault and are just part and parcel of global trade that’s ever-present in any technology. However, it is how certain Chinese brands negotiate these many hurdles when selling goods to the US and Europe that very quickly sets apart the good organisations from the bad ones.

In my years reviewing and installing different Chinese NAS solutions, some brands have definitely stood out more than others in terms of their support. For example, in the past 2 years, I have heard significantly more positive warranty/repair threads for CWWK, Jonsbo, and Terramaster than I have for brands like GMKtec, B-Link, or pretty much any brand that only seems to exist on AliExpress and Alibaba but has practically no in-house website or Western presence. That isn’t to say that those first few companies I mentioned have a 100% success rate—definitely not. Some simple Googling will always find you both good and bad instances. However, broadly, I’ve had better feedback from people I have provided support for and from numerous NAS subreddits for those brands than I have for some of the lesser-known and far more isolated organisations.

Another point to highlight is that some of the lesser-known brands are simply reusing existing designs and hardware architecture provided by an original manufacturer and relabelling it as their own. For example, CWWK manufactures a large amount of the hardware solutions you may see in the market, but it just so happens that they are sold to contractors and lesser-known providers who then apply their own manufacturer’s badge.

Where this becomes a problem with support is that if you encounter an issue with your hardware, the relabelled and rebadged name that’s been applied to that CWWK product can only provide limited support and even weaker hardware repair, as they are heavily reliant on the original manufacturer and their own production lines.

In these cases, I once again heavily recommend that if you are going to purchase any Chinese NAS product, that you go to the source. And circling back to the issue of security I mentioned earlier on, you tend to find that when spyware has been found on some hardware systems, it has been due to software that was applied to the hardware after it left the original manufacturer—more often than not, applied within an .exe found autoloading in the included copy of Windows.

So once again, double-check that the brand you’re talking to is the original manufacturer before you purchase a Chinese NAS solution, and double-check that they have some kind of Western presence first. It may seem almost obvious and naïve to say this, but ultimately, a lot of these organisations operate on tremendously thin profit margins. This means that the cost of manpower and hiring sufficiently skilled people to create these Western websites and English-understood points of sale is often left by the wayside by the less scrupulous organisations, as they simply do not have a clear enough print-to-profit or long-term strategy to provide solutions they can trust in order to engage with this.

Should I Buy a NAS from China?

The short answer? Yes, I think you can. You should be as security-aware as (frankly) you should be with any NAS product—as any 24/7 data storage solution is only one vulnerability away from being compromised. But as long as you know the risks and understand that support is not going to be as “next day” as it would be if you purchased a local product, I do genuinely think that you are okay to buy a Chinese NAS solution from the more well-known and reputable brands in the market. If the brand doesn’t have much of an online presence outside of China—even doesn’t really have much of its own website outside of AliExpress, Amazon, or Alibabaavoid them like the plague! Because those brands that aren’t prepared to make even the token effort to have much of an online presence outside of a retail website have certainly not got the profit margin to provide any kind of meaningful support and are more likely to cut corners. Worse still, it is those organisations that have such slim profit margins that are almost certainly going to be the ones that may be more susceptible to influence in installing exploitative or malware software components on their systems for an additional backhand payment.

Chinese NAS Brands That I Recommend

These are the brands I would personally recommend if you are considering a China-based NAS brand. These are 6 brands that I have used many of their products (NAS and others) that I have found the best experiences with, as well as, on balance,e the best online support and communication. No brand is perfect, and look hard enough and you will find good and bad on any brand, really, but these are six examples of brands that stand out from the others.

Buy Here on AmazonVisit Their Own Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on AmazonVisit Their AliExpress Store

Buy Here on Amazon

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle


Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

45Drives HL8 NAS Case Review

45Drives HL8 8-Bay MITX NAS Case Review

The 45Drives HL8 is an 8-bay desktop NAS chassis developed for users who want professional-grade storage hardware without committing to the rigid ecosystems of traditional NAS vendors. Designed and manufactured in North America, the HL8 is available in several configurations, with this review focusing specifically on the chassis, backplane, and power supply model. This version includes a precision-built steel enclosure, a direct-wired 8-bay SATA backplane, and a 500W 80 Plus Gold-rated Flex ATX power supply. It omits bundled motherboards, CPUs, and pre-installed operating systems, appealing to users who prefer to build or customize their NAS hardware environment while still benefiting from an integrated power and storage foundation. The HL8 aims to bridge the gap between low-cost DIY NAS enclosures, which often suffer from poor thermals and awkward layouts, and locked-down consumer appliances that limit software choices and upgrade potential. With a hinged open-frame design, support for full-height PCIe cards, and internal layout optimized for accessibility and cooling, the HL8 is positioned as a platform for long-term use and adaptability rather than a quick-start solution. While its price point is significantly higher than generic imported chassis, its construction and modular focus suggest it’s intended for serious users seeking more control, not simply more convenience.

Who Are 45Drives?

45Drives is a Canadian storage hardware manufacturer based in Nova Scotia, operating as a division of Protocase, a custom enclosure and prototyping company. The brand has built a reputation among system integrators, IT professionals, and homelab enthusiasts for delivering modular, open-platform storage solutions. Unlike many NAS vendors that focus on vertically integrated ecosystems, 45Drives offers systems built around industry-standard components, designed to be user-serviceable and adaptable. Their catalog includes high-density rackmount systems like the Storinator, hybrid flash-HDD systems such as the Stornado, and more recently, a range of compact desktop NAS chassis under the “HL” or HomeLab label. The HL8, HL4, and HL15 models are part of this effort to scale down enterprise-grade build quality into a form factor more appropriate for deskside or small office deployment.

A core part of 45Drives’ identity is its commitment to open-source principles, not just through hardware compatibility but also in software tooling and education. The company develops and maintains Cockpit-based management modules—such as their ZFS and Samba interfaces—for Linux distributions like Rocky Linux, which they often preinstall with their systems. These modules are freely available on GitHub, and the company encourages users to modify, self-host, or adapt them as needed. In addition to their software work, 45Drives actively engages with the community through regular YouTube content, documentation portals, and technical support that continues even when customers deviate from default hardware or software configurations. This combination of enterprise durability, user empowerment, and open development has earned 45Drives a dedicated following among those who want to retain full control over their infrastructure without sacrificing reliability or support.

BUILD QUALITY - 10/10
NOISE - 8/10
COOLING - 8/10
PRICE - 6/10
VALUE - 8/10


8.0
PROS
👍🏻1. Exceptional build quality using 2mm thick powder-coated steel
👍🏻2. Unique hinged design allows full interior access without disassembly
👍🏻3. Integrated 12Gb/s SATA/SAS-compatible hot-swap backplane
👍🏻4. Designed for Mini-ITX motherboards with full PCIe x16 slot suppor0t
👍🏻5. Tool-less and tray-less drive bays improve maintenance and upgrades
👍🏻6. Outstanding documentation and support from 45Drives
👍🏻7. Fully open-source-friendly chassis with non-proprietary layout
CONS
👎🏻1. Significantly more expensive than typical DIY NAS cases
👎🏻2. No native 2.5\" SSD bays included (requires 3D-printed or addon tray)
👎🏻3. Only compatible with Flex ATX PSUs, limiting choice and increasing cost

45Drives HL8 8-Bay MITX NAS Review – External Design

The HL8’s exterior sets it apart from typical consumer NAS enclosures through its bold and unique industrial construction – practically enterprise grade, at a homelab and desktop level. Built from 16-gauge powder-coated steel, the chassis weighs approximately 22 lbs even before drives are installed, conveying a sense of structural rigidity that clearly aligns more with enterprise hardware than with mass-market desktop cases.

The finish is matte and durable, avoiding cheap plastics or decorative panels. Buyers can choose between metal and acrylic front plates, and several color options are available, offering some degree of personalization—something rarely seen at this tier. Branding is subtle, with the HL8 model designation etched into the top panel and a logo plate on the front face.

Unlike most enclosures that rely on removable panels or sliding trays, the HL8 features a hinged “clam shell” design. The entire upper shell lifts open via captive thumb screws, granting immediate access to internal components without needing to remove the drives or disconnect cabling.

This mechanism provides real-time visibility into the system’s interior during operation, making it easier to perform diagnostics, replace fans, or adjust cabling. It’s particularly helpful for users who regularly service or upgrade their systems, and it avoids many of the frustrations associated with cramped or tool-dependent access panels.

The front of the case houses eight hot-swap 3.5” bays in a vertical arrangement, accessible without tools and pre-wired via the internal backplane. These bays are trayless and rely on drive guides for alignment, secured by the structural frame rather than individual plastic sleds. This design allows for rapid drive installation and removal while minimizing potential points of mechanical failure. The front ventilation is cut directly into the steel fascia, and airflow is directed through the drive bays by internal Noctua fans located behind them. There are no visible indicators or LCD panels on the front panel—minimalism is favored over visual clutter.

Around the rear, the layout remains conventional but clean. The rear I/O cutout accommodates standard mini-ITX motherboard layouts, and the single expansion slot supports a full-height PCIe card up to 72mm in height. The integrated Flex ATX power supply sits beside the motherboard area with its own exhaust fan, and ample passive ventilation is provided via additional steel cutouts. While visually understated, the HL8’s outer design prioritizes durability, accessibility, and functional airflow—traits that reflect its enterprise lineage more than its homelab label might suggest.

Category HL8 (Chassis + Backplane) HL8 (Chassis + Backplane + PSU)
Model Name HL8 HL8 with PSU
Drive Bays 8x 3.5″ Tool-less, Trayless Bays 8x 3.5″ Tool-less, Trayless Bays
Drive Compatibility SATA & SAS (12Gb/s) via backplane SATA & SAS (12Gb/s) via backplane
Hot-Swap Support Yes Yes
Backplane Interface Mini-SAS HD (SFF-8643) Mini-SAS HD (SFF-8643)
Motherboard Support Mini-ITX Mini-ITX
PCIe Expansion Slot 1x Full-height, full-length 1x Full-height, full-length
PSU Form Factor Not included Flex ATX (pre-installed)
PSU Rating 500W, 80 Plus Gold (SilverStone FX500)
Cooling 3x 80mm Noctua Fans (pre-installed) 3x 80mm Noctua Fans (pre-installed)
CPU Cooler Clearance Approx. 75mm (depends on board layout) Approx. 75mm (depends on board layout)
GPU Length Support Up to ~270mm Up to ~270mm
Chassis Material 2mm Powder-Coated Steel 2mm Powder-Coated Steel
Front I/O None (uses motherboard rear I/O) None (uses motherboard rear I/O)
Drive Activity LEDs Optional (headers on backplane) Optional (headers on backplane)
Tool-less Design Yes – Hinged Folding Design Yes – Hinged Folding Design
Dimensions (W x D x H) ~305mm x 370mm x 260mm (approx.) ~305mm x 370mm x 260mm (approx.)
Weight (Unpopulated) ~7.8kg ~9.5kg (with PSU)
Made In Canada (Chassis), USA (via Protocase partner) Canada (Chassis), USA (via Protocase partner)
Typical Price (USD) $599 $799

45Drives HL8 8-Bay MITX NAS Review – Internal Case Design

Internally, the HL8 case is engineered for both accessibility and structured airflow, with a layout that avoids many of the compromises found in smaller or mass-produced enclosures. The most notable feature is its fully hinged body, which allows the entire top and side panel assembly to lift upward without removing the drives. This open-access approach separates the drive chamber from the motherboard compartment without creating restrictive airflow barriers. It’s a significant advantage for users who need to inspect, troubleshoot, or upgrade internal components, especially when working with larger cooling units or dense cable configurations.

The motherboard area is positioned on the right side of the chassis, aligned horizontally to the drive plane, which prevents any obstruction by drive trays or cabling. This layout supports standard mini-ITX boards and allows full visibility of memory slots, M.2 sockets, and power headers even with drives installed. The motherboard is flanked by routing space that supports organized cabling, including SATA or power leads. This spacing is particularly useful when working with non-modular PSUs or when routing SATA cables from alternative controllers or add-in cards. The case does not limit users to any specific board vendor or layout beyond the mini-ITX size constraint.

Cabling for the backplane is pre-installed in the PSU model, which simplifies setup considerably. The backplane itself is a direct-wired design supporting up to eight SATA drives without requiring SAS expander cards or proprietary interfaces. This approach ensures compatibility with a wide range of consumer and enterprise SATA drives and avoids the long-term risks of vendor-specific drive bay lock-ins. It also makes replacing or troubleshooting individual cables far easier than in systems using multipath or bundled connectors. Power and data connections are cleanly routed through the side of the case, keeping airflow clear and minimizing vibration interference.

The Flex ATX PSU sits at the rear left and is mounted horizontally, drawing air through its own intake and exhausting separately from the main airflow path. This compact configuration leaves the bulk of the case’s lower chamber available for future expansion or airflow tuning. Additional internal fan mounts and brackets are preinstalled, and 45Drives includes all necessary mounting screws and documentation—even down to port-specific manuals for the pre-installed PSU. The internal design of the HL8 shows clear thought toward ease of maintenance and modularity, reflecting an expectation that users will revisit and modify their system over time rather than treat it as a sealed appliance.

45Drives HL8 8-Bay MITX NAS Review – Noise and Cooling

The HL8’s cooling design reflects a balance between thermal efficiency and acoustic performance, especially in its PSU-included configuration. By default, this model ships with multiple Noctua fans—specifically, two NF-A12x15 fans for intake and one NF-A4x10 for exhaust—which are widely regarded for their low noise output and long-term reliability.

Combined with the direct airflow path created by the open drive cage layout, the HL8 maintains effective cooling of both hard drives and system components without requiring high-RPM, high-noise fan profiles. Even under load, thermal tests show the drive temperatures hovering around 50°C in a 20°C ambient environment—well within safe operating margins for mechanical disks.

In real-world usage, the system produces around 33–34 dBA at idle and 42 dBA under full fan load during tasks such as ZFS pool creation or sustained disk activity. These levels are consistent with what you would expect from a quiet desktop PC and are significantly lower than typical rackmount systems or budget enclosures using unbranded high-speed fans.

The use of steel panels throughout the chassis also contributes to noise dampening, reducing vibration resonance from spinning drives. Overall, the HL8’s thermal and acoustic profile is well-suited for deployment in office or home environments where audible noise is a concern, without sacrificing long-term cooling performance.

45Drives HL8 8-Bay Case vs the Jonsbo N3 Case

The 45Drives HL8 and the Jonsbo N3 both offer 8-bay NAS enclosures for mini-ITX builds, but they cater to very different tiers of the DIY NAS market. The HL8 is positioned as a premium, enterprise-grade enclosure built entirely from 16-gauge steel and manufactured in Canada. It includes a fully integrated backplane, Noctua fans, and a Flex ATX PSU—features aimed at maximizing serviceability, thermal control, and long-term reliability.

Priced at roughly $880 USD for the chassis, backplane, and PSU combo, it targets users who demand industrial standards in a desktop form factor. The Jonsbo N3, in contrast, is a Chinese-manufactured enclosure constructed from 2.0mm aluminium alloy with 1.0mm steel internals.

It focuses on maximizing functionality in a compact and aesthetically refined format, with average retail pricing ranging between $150–$170 USD, though occasional sales and unpredictable shipping costs on platforms like AliExpress can make pricing volatile.

Category 45Drives HL8

 

Jonsbo N3

 

Drive Bays 8x 3.5″ (tool-less trays, SATA/SAS via backplane) 8x 3.5″ (hot-swap, SATA only via passive backplane)
Backplane Type Integrated 12Gb/s SATA/SAS backplane Passive SATA backplane (individual ports)
Motherboard Support Mini-ITX Mini-ITX, DTX
PCIe Slots 1x Full-height, full-length (up to ~270mm) 2x expansion slots (supports 1x double-width card)
PSU Support Flex ATX SFX (≤105mm) with internal extension cable routing
CPU Cooler Clearance Up to 75mm (depends on board layout) Up to 130mm
GPU/PCIe Card Clearance Up to ~270mm (1 slot) Up to 250mm (double-width supported)
Construction Material 2mm Powder-Coated Steel 2mm Aluminium (exterior), 1mm Steel (interior)
Cooling 3x 80mm Noctua fans included (chassis & CPU area) 2x 100mm fans included (HDD area), 2x 90mm optional
Front I/O Ports None (depends on motherboard I/O) USB 3.0 Type-A, USB 3.2 Gen2 Type-C, Audio Combo
LED Indicators Optional drive activity LEDs 8x front panel drive activity LEDs
Toolless Access Yes – hinged “flower” folding design No – top secured by Allen screws
Chassis Dimensions (WxDxH) ~305mm x 370mm x 260mm (approx., rectangular shape) 233mm x 262mm x 298mm
Weight ~9.5kg (with PSU and backplane) 3.9kg (no PSU)
Hot Swap Support Yes Yes
Price (avg.) $658 (chassis + backplane) $150–$170 USD (no PSU, varies by seller/region)
Manufacturing Origin Canada (with some imported components IN PRE-BUILT NAS models) China

In terms of hardware layout and user experience, the HL8 emphasizes modularity and ease of access. Its unique “flower-style” hinged chassis allows for complete servicing of drives, motherboard, cabling, and PSU without disassembly. The built-in backplane supports both SATA and SAS, reducing the need for messy cabling or additional HBA cards unless required for scale-out. Meanwhile, the Jonsbo N3 offers a two-chamber design separating drives and the motherboard/PSU area, supporting 8 hot-swap drives via an included SATA-only backplane. However, the power delivery system relies on two Molex and one SATA connector—an odd combination that may require more planning for power distribution. The N3 also employs a PSU passthrough cable from the back to a front-mounted internal SFX PSU, saving space but potentially restricting airflow and complicating installation. Unlike the HL8’s enterprise cable routing, the N3 requires tight cable management due to its smaller internal volume, and is more prone to cable congestion near the motherboard tray.

Where the HL8 wins in build quality and professional usability, the N3 counters with surprising features at its price point. The N3 includes dual rear fans, 8 LED indicators for drive activity, USB 3.2 Gen 2 Type-C front I/O, and support for large PCIe GPUs or network cards up to 250mm. However, it uses rubber grommet-mounted drive holders instead of trays—a cost-saving measure that may reduce vibration but introduces concerns about long-term durability and ease of drive removal. It also lacks tool-less panels for the main lid, requiring an Allen key for access, which, while flush and neat, isn’t practical for regular service. By comparison, the HL8 is fully toolless throughout. Ultimately, the HL8 is ideal for users who prioritize low-maintenance reliability and modular enterprise design in a desktop form, while the N3 offers excellent value for cost-conscious DIY builders willing to trade some serviceability and airflow flexibility for size, aesthetics, and affordability.

45Drives HL8 8-Bay MITX NAS Review – The Pre-Built AMD Model

In addition to offering the HL8 as a chassis with backplane and power supply, 45Drives also sells a fully assembled, tested, and burn-in validated configuration for users who prefer a turnkey deployment. The current prebuilt model typically includes a Gigabyte B550I AORUS Pro AX mini-ITX motherboard, paired with either an AMD Ryzen 5 5500GT (6-core, 12-thread) or Ryzen 7 5700G (8-core, 16-thread) processor. These CPUs offer solid single- and multi-threaded performance, integrated graphics for transcoding or light GUI workloads, and efficient power profiles.

The build also comes with up to 64GB of DDR4 UDIMM memory, a 1TB NVMe SSD (typically Gen 4), Noctua NH-L9a-AM4 low-profile CPU cooler, and factory-installed Noctua case fans. All internal wiring is professionally routed, and the system arrives with Rocky Linux and the Houston UI preinstalled for immediate setup.

Category HL8 Prebuilt Model (Full Configuration)
Model Name HL8 (Prebuilt by 45Drives)
Chassis Material 2mm Powder-Coated Steel (Same as enterprise rackmount line)
Motherboard Gigabyte B550I AORUS Pro AX (Mini-ITX)
CPU AMD Ryzen 5 5500 GT (6 cores / 12 threads, Zen 3, 3.6GHz base, 4.4GHz boost)
Memory (Default) 16GB DDR4-3200 Unbuffered ECC (Expandable to 64GB)
SSD (OS Drive) 1TB Kingston NVMe Gen 4 x4
Drive Bays 8x 3.5″ Trayless Tool-less Bays (SATA/SAS 12Gb/s Backplane)
Hot-Swap Support Yes
Backplane Interface Mini-SAS HD (SFF-8643 to SATA breakout)
PSU SilverStone FX500 (500W Flex ATX, 80 Plus Gold)
Cooling Fans 3x 80mm Noctua (pre-installed) + CPU: Noctua NH-L9a cooler
Expansion Slot 1x PCIe 4.0 x16 (Supports full-height, full-length GPU or NIC)
M.2 Slots 2x (One used for OS drive, One used with SATA controller)
SATA Ports (Onboard) 4x SATA III (From motherboard)
Additional SATA 4x via M.2 SATA controller (occupies second M.2 slot)
Networking 1x 2.5GbE (Realtek 8125B) + Wi-Fi 6 (802.11ax)
USB Ports (Rear) 4x USB 3.2 Gen 1, 2x USB 3.2 Gen 2 (1x Type-A, 1x Type-C)
Audio Ports 3.5mm Mic In / Line Out / Line In
Dimensions (W x D x H) ~305mm x 370mm x 260mm (approx.)
Weight (Unpopulated) ~9.5kg
Operating System OS not included by default; compatible with TrueNAS, Rocky Linux + Houston UI, Proxmox
Typical Price (USD) $1,399 (at time of writing)

At the time of writing, the total cost of the prebuilt HL8 with the Ryzen 5700G configuration is $1,538 USD. In contrast, a self-built system using comparable off-the-shelf components can be assembled for approximately $875–$900. A rough cost breakdown would be: Ryzen 7 5700G and B550I motherboard combo ($260), 64GB DDR4 UDIMM ($103), 1TB NVMe SSD ($60), 500W Flex ATX Gold PSU ($90), Noctua CPU and case fans ($75), plus an equivalent MITX 8-bay chassis with SATA backplane ($159–$180). While this approach offers clear cost savings, it comes with multiple delivery sources, fragmented warranties, and no factory testing—factors that may be important to users prioritizing reliability and vendor accountability over price.

The prebuilt model is best suited to users who want predictable performance, reduced setup time, and consolidated post-sale support. It removes the need for component sourcing, physical assembly, and initial troubleshooting. However, it also imposes some limitations, such as the use of a single 2.5GbE network port and lack of configuration flexibility. Users requiring more advanced networking or GPU options will need to expand via the PCIe slot manually. Overall, the prebuilt HL8 fills a niche for those who want an enterprise-adjacent storage server without the learning curve or integration work required by a ground-up build, but it may be over-specified or overpriced for more self-sufficient users.

The 45Drives Houseton UI Software – Any Good?

The Houston UI platform from 45Drives is built on top of the open-source Cockpit Project, designed to offer users a web-based server management interface with a lightweight footprint.

Its browser-based GUI makes it accessible from any device on the network, and it supports multiple Linux distributions, including Rocky Linux, which is often used as the default OS with Houston UI.

One of the primary strengths of Houston UI is its ZFS management interface. Users can easily create, modify, and monitor ZFS storage pools without needing to interact directly with the command line.

The system allows for selection of RAID types (RAIDZ1, Z2, etc.), VDEV expansion, record size configuration, deduplication, encryption, and adjustable compression — all accessible within a guided, GUI-based setup.

System monitoring is a central feature of Houston UI, with a real-time dashboard showing CPU, memory, network throughput, and active services. It includes disk status indicators, smart monitoring tools, and hardware detail pages.

Some of which include visual layouts depending on motherboard detection. While the graphical presentation is basic compared to Synology DSM, it does provide sufficient system insight for regular administration.

Houston UI also includes a modular service control center, where administrators can enable or disable a wide range of server services such as Samba (SMB), NFS, SSH, and rsync.

Each module is toggleable, and users can configure individual services with editable configuration files directly from the browser. This brings flexibility, while still maintaining visual accessibility for basic tasks.

The task scheduler in Houston UI provides an easy way to set up automated jobs — including backups, updates, power cycling, and network interface toggling.

Unlike many systems that hide these functions under multiple wizards, Houston offers a unified “Tasks” area for managing all routine automations, including custom scripts and cron-based tasks.

A standout feature is the cloud synchronization and backup module, which offers connectivity to cloud platforms such as Amazon S3 and Backblaze B2, as well as support for local-to-remote rsync and FTP targets. It allows users to control bandwidth, frequency, and folder mappings from a single-pane interface — something that’s typically fragmented in competing platforms.

For users running virtual machines, Houston UI includes a KVM-based virtualization manager. This allows the creation and monitoring of guest VMs directly through the browser, including storage provisioning, image selection, CPU/memory configuration, and console access. While not as feature-rich as Proxmox, it’s suitable for lightweight VM workloads and container testing.

Finally, Houston supports module extensions, with 45Drives publishing their own file sharing and ZFS modules via GitHub. These can be installed on any compatible Linux system running Cockpit. This open approach allows users to build their own UI extensions or pull from the community, avoiding platform lock-in and enabling customization well beyond the factory defaults.

45Drives HL8 8-Bay MITX NAS Review – Verdict and Conclusion

The 45Drives HL8, when configured as a chassis with backplane and PSU, represents a refined and deliberate approach to small-form NAS deployment. Priced around $880 USD, this configuration sits well above entry-level alternatives, but the investment is clearly reflected in its enterprise-grade construction, serviceable layout, and attention to detail. With a robust 16-gauge steel chassis, direct-wired SATA backplane, and a high-efficiency 500W Flex ATX PSU pre-installed, it offers an ideal base for users who plan to build a serious and scalable NAS solution without locking themselves into restrictive ecosystems.

The hinged body design, tool-free drive access, and Noctua fan integration show a strong understanding of real-world usability, especially for those who perform ongoing maintenance, upgrades, or hardware experimentation. In that sense, it’s less a typical “consumer NAS case” and more a modular platform intended for long-term infrastructure use in homelab and small business environments.

That said, this is not a universal fit for all users. The HL8’s exclusive support for mini-ITX motherboards imposes limitations on connectivity and expansion, especially for those needing multiple PCIe lanes or additional SATA ports without relying on adapters. And while the internal layout is clearly optimized, buyers still need to be comfortable sourcing and configuring their own motherboard, CPU, memory, and storage—something that could be daunting for beginners or those seeking simplicity over flexibility. In markets where similar 8-bay enclosures from lesser-known brands can be found for half the price, the HL8’s value lies more in its physical build quality, localized production, and long-term viability rather than raw cost efficiency. Users comparing it to entry-tier rackmount gear or compact server cases will need to weigh whether the HL8’s refinement and modularity justify the premium.

Ultimately, the HL8 is a product with a clearly defined audience: self-hosters, IT professionals, and technical users who understand the value of vendor-agnostic hardware and want to retain full control over their system’s lifecycle. It offers a rare middle ground between low-cost DIY setups that require piecemeal integration and fully locked turnkey NAS systems from mainstream brands. For those who are willing to invest not only financially but also in the time and knowledge needed to assemble and manage their NAS environment, the HL8 stands out as one of the most thoughtfully engineered and supportable 8-bay NAS chassis currently on the market.

Pros Cons
1. Exceptional build quality using 2mm thick powder-coated steel 1. Significantly more expensive than typical DIY NAS cases
2. Unique hinged design allows full interior access without disassembly 2. No native 2.5″ SSD bays included (requires 3D-printed or addon tray)
3. Integrated 12Gb/s SATA/SAS-compatible hot-swap backplane 3. Only compatible with Flex ATX PSUs, limiting choice and increasing cost
4. Designed for Mini-ITX motherboards with full PCIe x16 slot support
5. Tool-less and tray-less drive bays improve maintenance and upgrades
6. Outstanding documentation and support from 45Drives
7. Fully open-source-friendly chassis with non-proprietary layout

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 

Jonsbo N10 and NV10 ITX NAS Cases Revealed at Computex 2025

Jonsbo N10 and NV10 MITX NAS Enclosures

UPDATE – The Jonsbo N10 Case Review is now available. You can READ it HERE, or watch the video HERE.

At Computex 2025, Jonsbo introduced two compact NAS enclosures designed specifically for Mini-ITX systems — the N10 and NV10. These cases mark a departure from the larger, high-capacity N5 chassis revealed at Computex the year before, instead prioritizing a more focused approach for users building flash-based NAS setups or compact home servers.

Both models support FLEX power supplies up to 150mm and include a USB Type-C front I/O, but they diverge in functionality: one favors SSD storage, while the other accommodates low-profile GPUs. With a small footprint of just 205mm x 205mm x 108mm, the N10 and NV10 are part of a broader trend toward highly efficient, minimal-space deployments. As demand grows for quieter, energy-efficient NAS builds and localized AI or media applications, these enclosures reflect Jonsbo’s continued push into purpose-built server chassis for the DIY market.

Hardware Specifications for the N10 and NV10

The Jonsbo N10 enclosure is engineered specifically for users building compact NAS systems that rely on SSD storage. It accommodates a Mini-ITX motherboard and includes four internal 2.5-inch drive bays arranged along the base of the chassis. These drive bays do not feature a backplane or quick-release mechanism; instead, drives are mounted using traditional screw-based trays. Users will need to ensure their motherboard or PCIe expansion cards provide the necessary SATA ports to connect all four drives.

The chassis is constructed from a combination of 3.3mm thick aluminum alloy panels and a 1.0mm steel internal frame, contributing to overall structural rigidity while maintaining a lightweight footprint. Cooling is handled by two built-in 40mm fans mounted on the rear panel, operating at 5000 RPM to provide active airflow across the storage bays. The magnetic top panel allows for quick internal access during installation or servicing.

The NV10, while identical in size and base materials to the N10 (205mm wide, 205mm deep, and 108mm high), is tailored to users who require GPU support within a compact chassis. It features two low-profile PCIe expansion slots and supports dual-slot graphics cards up to 190mm in length. There are no dedicated drive bays in the NV10, leaving internal space available for airflow and graphics card installation.

While it does not include internal case fans like the N10, the enclosure relies on ventilation cutouts across the top, sides, and rear to manage passive airflow. Effective cooling in the NV10 will depend on the power supply’s exhaust fan and any active cooling solution on the GPU. The enclosure’s internal volume is tight, so thermal constraints and airflow direction should be carefully planned during assembly.

Both models support FLEX 1U power supplies up to 150mm in length, which mount at the rear of the case above the motherboard tray. The CPU cooler clearance is limited to 38mm in both the N10 and NV10, necessitating the use of low-profile coolers—such as those from Noctua or Dynatron. Neither model includes support for ATX or SFX power supplies, nor is there native support for 3.5-inch HDDs, reinforcing their focus on SSD or flash-only builds.

A single USB Type-C port is located on the front I/O of both enclosures, though no additional USB or audio connectors are present. There is also no onboard fan control or lighting, making these enclosures minimal by design. Weights are modest, with the N10 at 1.6 kg and the NV10 slightly lighter at 1.5 kg, making them easy to transport or integrate into space-limited deployments.

Why Are Jonsbo Enclosures So Popular?

Jonsbo enclosures have gained popularity among NAS and SFF (small form factor) PC builders due to their consistent focus on minimalist design, high material quality, and purpose-built layouts that cater to niche DIY projects. Their use of thick aluminum panels combined with solid steel internals strikes a balance between aesthetics, durability, and thermal performance. Unlike many generic ITX cases, Jonsbo often designs around specific use cases—such as flash-based storage, GPU acceleration, or low-noise operation—rather than attempting to serve broad mainstream needs. This specialization appeals to enthusiasts who value efficient use of space, passive ventilation potential, and understated external styling. Additionally, the availability of features like magnetic panels, FLEX PSU support, and increasing support for ITX motherboards with NAS features has positioned Jonsbo as a go-to brand for compact, customizable server enclosures.

Where is the Jonsbo N6?

While the N10 and NV10 mark Jonsbo’s continued refinement of compact, purpose-driven NAS and SFF enclosures, attention is already shifting to the next model in development: the Jonsbo N6. Although few details have been officially confirmed, early indications suggest that the N6 may attempt to bridge the gap between the high-capacity N5 and the minimal N10/NV10 by offering more drive bays, improved airflow, or even partial hot-swap capabilities—all while retaining the small footprint and aluminum-steel construction the brand is known for. If Jonsbo continues to respond to user demands for compact yet scalable server chassis, the N6 could potentially appeal to builders seeking more flexibility without committing to full tower or rackmount designs. Its rumored release later in 2025 will likely determine how far Jonsbo is willing to expand its NAS-focused lineup beyond flash-only configurations.

Where to Buy Jonsbo NAS Cases?

Read the Jonsbo NAS Series Comparison Article on NASCompares Below (click below):

📧 SUBSCRIBE TO OUR NEWSLETTER 🔔
[contact-form-7]
🔒 Join Inner Circle

Get an alert every time something gets added to this specific article!


Want to follow specific category? 📧 Subscribe

This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

Need Advice on Data Storage from an Expert?

Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] TRY CHAT Terms and Conditions
If you like this service, please consider supporting us. We use affiliate links on the blog allowing NAScompares information and advice service to be free of charge to you.Anything you purchase on the day you click on our links will generate a small commission which isused to run the website. Here is a link for Amazon and B&H.You can also get me a ☕ Ko-fi or old school Paypal. Thanks!To find out more about how to support this advice service check HEREIf you need to fix or configure a NAS, check Fiver Have you thought about helping others with your knowledge? Find Instructions Here  
 
Or support us by using our affiliate links on Amazon UK and Amazon US
    
 
Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.

☕ WE LOVE COFFEE ☕

 
❌