FreshRSS

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
À partir d’avant-hierFlux principal

New 8TB Sabrent Rocket 4 Plus 7000MB/s+ SSD Revealed

31 août 2021 à 07:58

New Sabrent Rocket 4 Plus 8 Terabyte PCIe4 M.2 3D TLC SSD Revealed

Good news for anyone looking to upgrade their PCIe4 m.2 NVMe enabled PC editing or gaming machine with the sneakily quiet reveal that Sabrent is working on an 8TB model to their popular Rocket 4 Plus series of SSDs. This is particularly interesting, given that till now the largest drive we have seen on the market has been an impressive 4TB of storage (from several brands) and although there have been 8TB models of M.2 SSDs available (even in PCIe4), they have been provided with one especially large compromise in the NAND department that has massively downgraded their performance and durability to a point where they are designated as lesser drives and therefore hardly comparable to the top tier SSDs in their premium ranges. This Sabrent SB-RKT4–8TB Rocket 4 Plus 8TB drive though is a very different beast and potentially one of the first drives in the world to manage to balance the scales and provide high storage, high performance, high durability and open the gates commercially to the next tier of M.2 PCIe4 SSD storage. Let’s go through everything we know.

Review of the Sabrent Rocket 4 Plus 4TB Model HERE https://nascompares.com/2021/08/05/sabrent-rocket-4-plus-ssd-review

What Are The Hardware Specifications of the Sabrent 8TB Rocket 4 Plus SSD?

At this time it appears the Sabrent Rocket 4 Plus 8TB model is not especially close to full release and wit that the specifications at this stage are largely unavailable. We DO know that the drive is part of their highest tier NVMe SSD series and therefore a lot of the existing architecture we can already ascertain. Below is everything we know, what we can estimate and how the 8TB model might compare with the rest of the Sabrent Rocket Plus 1, 2 and 4TB models:

Note – Where ‘(est.)’ is stated, I am still awaiting confirmation on these specifications, which are supplied below as based on the previous 4TB release and are provided for general guidance and not from the brand/testing

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

NEW = SB-RKT4P-8TB

Capacity 1TB / 1000GB 2TB / 2000GB 4TB / 4000GB 8TB / 8000GB
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D TLC NAND 96L B27 3D TLC NAND 96L B27 3D TLC NAND 96L B27 3D TLC NAND 96L
Capacity 1TB Single Sided 4TB Double Sided 4TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Memory 1GB 2GB 4GB 8GB
Size 2280 2280 2280 2280
Warranty 5yr 5yr 5yr 5yr
  SB-RKT4P-1TB SB-RKT4P-2TB SB-RKT4P-4TB SB-RKT4P-4TB
Price in $ and $ $179 / £155 $359 / £305 $999 / £810 $1999 / £1699 (est.)
Total Terabytes Written (TBW) 700TB 1400TB 3000TB 6000TB (est.)
Mean Time Between Failures (MTBF, hours) 1600000 1600000 1600000 1600000 (est.)
DWPD 0.4DWPD 0.4DWPD 0.4DWPD 0.4DWPD (est.)
Random Read (Max, IOPS), 4 KB QD32 350000 650000 650000 650000 (est.)
Random Write (Max, IOPS), 4 KB QD32 700000 700000 700000 700000 (est.)
Sequential Read (Max, MB/s), 128 KB 7000MB 7100MB 7100MB 7100MB (est.)
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6850MB 6850MB (est.)

One very important detail that needs focus here is the use of 3D TLC NAND on the new 8TB Sabrent SSD. Now, as mentioned, Sabrent has had an 8TB PCIe4 NVMe M.2 SSD available already, known as the Sabrent Rocket Q4 which is their much more affordable PCIe 4.0 SSD tier. It is labelled as such as it takes advantage of the much more economy sensitive QLC NAND (Quad Layer Cells) which are able to squeeze in a larger amount of data onto the NAND blocks on the PCB board of the SSD. However, the application of QLC NAND, although noticeable lower in price-per-TB, results in significantly lower throughput (i.e Read and Write) than TLC (Triple Layer Cell) NAND that is largely the NAND build of choice for Prosumer/Business SSDs. It also results in a much lower insurance rating (i.e TBW and DWPD) meaning the timeframe for the lifespan of the drive and sustained lifetime performance is much lower. THIS is one of the BIGGEST reasons that the 8TB Rocket 4 Plus model being revealed is such a big deal because it is arriving with 3D TLC NAND and therefore will be expected to hit that 7,000MB/s+ Sequential Read Speed and 6,850MB/s+ Sequential Write as featured in the 2TB and 4TB models (perhaps even possibly surpass it). We still need to wait for full official details on this drive to become public, but it’s a very intriguing and compelling reason to keep the Sabrent 8TB Rocket 4 Plus on your radar in 2021/2022.

When Will the Sabrent Rocket 4 Plus 8TB SSD Be Released?

There is practically no details on when this Sabrent 8TB Rocket 4 Plus SSD media will release, but given the deluge of PCIe4 M.2 NVMe drives released in the last 2 months (as the market catches up from delays and setbacks in the pandemic, semi-conductor shortages, supply chain corrections and existing release roadmap’s being forced to adapt on the fly!) it will be interesting to see if Sabrent can get this drive out to market before big names like Samsung, WD and Seagate can challenge the 8TB tier on these drives. PCIe4 x4 M.2 is going to be around for a while and although PCIe5 is now in discussion and slow implementation will be on the horizon in 2022, it will be by no means mainstream enough to substantially interrupt the growth of PCIe4 M.2 any time soon. With that in mind, Sabrent might well have the time to work on this and not rush it to the door. Perhaps a more formal reveal before the end of the year with something more substantial as a confirmed ETA to follow.

How Much Will the Sabrent 8TB Rocket 4 Plus SSD be?

With so many factors, ranging from the fact that 8TB NVMe PCIe4 m.2 SSD with 3D TLC NAND (96layer) is almost completely industry unheard of at this m.2 length, to the previously mentioned market hurdles in the last 12-18months, if Sabrent can get the 8TB Rocket 4 Plus SB-RKT4P-8TB to market before many of it’s competitors, they will be in a position to be quite high in their pricing. Recent months have led to the price tiering on 1TB, 2TB and 4TB drives no longer strictly adhering to the “doubling your storage means you pay less per TB” and in fact in many cases, a 4TB costs more per terabyte than a 2TB, which in term can be more than a 1TB. Given the relative obscurity of a drive of this type, we will be seeing a drive that will almost certainly weigh in at $1500-2000 at even a conservative estimate. However, until Sabrent make a more formal announcement of this drive and its availability, this is all still very much up in the air!

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 Vs MSI SPATIUM M480 PCIe4 M.2 SSD Comparison

20 août 2021 à 16:00

PCIe 4 NVMe SSD Comparison – MSI Spatium M480 vs Seagate Firecuda 530

The PCIe 4.0 M.2 SSD market continues to grow into the accepted standard in 2021/2022 for performance – and the usual brands are rising to the challenge. If there is only one thing that you take from these comparisons on NVMe SSDs of late, it is that even in this relatively recent tier of Prosumer/Business storage, there is still plenty of choice. In fact, when Seagate revealed their industry beating Firecuda 530 last month, it was largely unchallenged for just a week, before MSI stepped up and formally revealed their new Spatium M480 series. What makes these two SSDs particularly interesting is that they are both based on an incredibly similar architecture and provide arguable comparable throughput too. Alongside this, professional and casual gaming consumers are having to make a choice here between Seagate (a big, BIG name in data storage) and MSI (a big, BIG name in gamer circles) – not as straightforward as you might think. So today I want to talk about these two brands, discuss what they offer in terms of performance, responsiveness, durability and endurance, and hopefully help you decide whether the Firecuda or Spatium M480 deserves your data.

 

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4
NAND 3D TLC Micron B47R 176L B27 3D NAND 96L
Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 Phison E18-PS5018
Warranty 5yr 5yr
 

A quick look at the architecture of each SSDs does NOT show a huge amount of disparity between them at first. Both arrive with PCIe 4.0 M.2 bandwidth (a potential maximum 8,000MB/s), the latest NVMe 1.4 revision and utilizing the cutting edge E18 Phison controller, resulting in over 7,000MB/s performance. However, one key difference we CAN see is in the choice of NAND being used by either NVMe SSD. Though both the Seagate and MSI SSD both use 3D TLC NAND, the M480 USES 96 layer NAND, whereas the Firecuda 530 arrives with an impressive 176 layer NAND – a significant advantage in a number of areas like IOPS and Throughput in the usage of the drive (even affecting endurance). This may seem like a minor point, but the impact of this choice will bear fruit later on. Let’s compare how each drive is priced.

MSI Spatium M480 vs Seagate Firecuda 530 – Price & Capacity

The price tag of the Firecuda 530 and Spatium M480 respectively are both based on the most recently available pricing at the time of writing, though the MSI NVMes might change. Nonetheless, the pricing on each PCIe 4×4 SSD is actually quite comparable and the differences that appear between each capacity model and even in the currency conversion is not too bad. It should also be noted that the prices below are based o nthe M480 and FC530 without a heatsink, though both brands supply a high-quality heatsink kit version at a smaller increased cost. Overall, I would say that the MSI M480 has a lower Price per GB/TB than the Seagate drive, but that is not quite the end of the story, as both brands have providing slightly different series capacity options:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Price in $ and $ $139 / £119 $119 / £105 (TBC)
1TB Model ZP1000GM3A013 M480-1000GB
Price in $ and $ $239 / £199 $239 / £189 (TBC)
2TB Model ZP2000GM3A013 M480-2000GB
Price in $ and $ $419 / £379 $399 / £369 (TBC)
4TB Model ZP4000GM3A013 N/A
Price in $ and $ $949 / £769

Both brands have supplied the 500GB tier (i.e smaller scale gamers, caching, 2+ 4K projects for editing), 1TB (i.e professional gamers, rackmount caching/tiering, 4K/8K editing) and 2TB (i.e Pro Gamers and Streamers, Professional 4K/8K Post Production and enterprise) available in their ranges, but the Seagate Firecuda 530 is one of only around 2-3 brands that supply a 4TB PCIe Gen 4×4 m.2 4TB drive at 2280 length. This is particularly ambitious of the brand, especially when you look a the potential 4 figure price tag. However professional buyers who only want to make a purchase like this once every 5 years at least are going to be attracted to this option. Additionally, because the highest tiers of storage in NVMe are where you find the best performance (with the MASSIVE exception of when a brand uses QLC NAND of course), Seagate has clearly decided to put ALOT of backing on these drives in 2021/2022 to facilitate the biggest budget buyers. The MSI M480 is the winner here in terms of price per GB/TB, but Seagate win on Capacity and potentially on value – but let’s not get too ahead of ourselves yet.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Reported Read & Write Speed

The throughout that the MSI M480 and Firecuda 530 can provide in sequential read and write are close, but on paper, Seagate win. Obviously, these are slightly more idealised benchmarks from the brands themselves and are maximums reported by their tech teams respectively, but even then you can see that the FC 530 provides a heck of a lot! Even in the Seagate Firecuda 530’s weakest tier (the 500GB model) it still outpaces the M480 noticeably. Once again, though both drives feature similar memory/SD, it is that higher-quality NAND that the Seagate features that gives it that edge. Below is a breakdown of the performance of each capacity tier on each NVMe:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Sequential Read (Max, MB/s), 128 KB 7000MB 6500MB
Sequential Write (Max, MB/s), 128 KB 3000MB 2850MB
1TB Model ZP1000GM3A013 M480-1000GB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5500MB
2TB Model ZP2000GM3A013 M480-2000GB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
4TB Model ZP4000GM3A013 N/A
Sequential Read (Max, MB/s), 128 KB 7300MB  
Sequential Write (Max, MB/s), 128 KB 6900MB

Fair play to the MSI for still providing some genuinely impressive performance, eclipsing a number of other 96 layer 3D NAND drives previously compared here. Although neither brand is using an in-house built controller, choosing to use the Phison E18-PS5018 chip, so the fact that they can both hit 7,000MB/s is not too surprising, the fact the FC530 can hit higher in 3 of its 4 available capacities at 7,3000MB/s is the clincher here. Remember, the PCIe 4.0 x4 bandwidth that this drive utilises max’s out at 8,000MB/s, which is getting increasingly close to saturation here! The Seagate Firecuda 530 clearly wins here. Next, we can look at the reported IOPS of these two drives, as this is one of the Achilles heels of the MSI M480 sadly.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Reported IOPS

The IOPs ratings of each of these drives, despite their relatively similar architecture, is significantly different. IOPs, along with the endurance and durability which we will touch on later, is one of the key areas that Seagate say they focused on with the Firecuda 530 and compared with the MSI M480, it shows. Performing twice the random read IOPS at the 500GB and 1TB tiers, they soon break the 1,000,000 IOPS barrier in both random read and write in the higher tiers. Although IOPS are generally a much more business/enterprise metric, they still hold court with professional gamers and in data centre-class AI operations. The 170K random read IOPS on the Spatium M480 is especially low (given the rest of the hardware on that m.2 PCB!) and it eventually maxes out at 650/700K random read/write at the highest tiers. Here is a breakdown:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Random Read (Max, IOPS), 4 KB QD32 400,000 170,000
Random Write (Max, IOPS), 4 KB QD32 700,000 600,000
1TB Model ZP1000GM3A013 M480-1000GB
Random Read (Max, IOPS), 4 KB QD32 800000 350,000
Random Write (Max, IOPS), 4 KB QD32 1000000 700,000
2TB Model ZP2000GM3A013 M480-2000GB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700,000
4TB Model ZP4000GM3A013 N/A
Random Read (Max, IOPS), 4 KB QD32 1,000,000  
Random Write (Max, IOPS), 4 KB QD32 1,000,000

Overall, it is hard to claim this as anything else but a definitive win for the Seagate Firecuda 530 over the MSI M480 in terms of IOPS. Later in 2021, we will be running extended performance testing on these drives to see how well these stats hold up over extended periods, but in all likelihood, these stats will still be comparatively distance between each drive.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Endurance & Durability

Next up, we need to discuss how well these two drives can endure consistent write/rewrites in their predicted 5 year lifespan (i.e in their 5 year warranty period and based on the drives being in constant use). The Endurance and Durability of an SSD is an area that is overlooked often enough that I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability and endurance in 2021/2022 is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and MSI Spatium M480 are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the MSI Spatium M480 and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and MSI Spatium M480 stand on this:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Total Terabytes Written (TBW) 640TB 350TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
1TB Model ZP1000GM3A013 M480-1000GB
Total Terabytes Written (TBW) 1275TB 700TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
2TB Model ZP2000GM3A013 M480-2000GB
Total Terabytes Written (TBW) 2550TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
4TB Model ZP4000GM3A013 N/A
Total Terabytes Written (TBW) 5100TB  
Mean Time Between Failures (MTBF, hours) 1,800,000  
DWPD 0.7DWPD

Although many users might well dismiss the TBW/DWPD of an SSD, as they do not feel they are going to refresh the data on the drive at that extreme frequency per day, it should be noted that this should also be used as a suitable benchmark for the lifespan of the NAND itself. In other words, jsut because a drive has a 5-year warranty, doesn’t mean you necessarily want to replace it in 5 years! More enduring NAND means both that the SSD will have a longer lifespan AND that it should be able to maintain it’s advertised performance for longer! High DPWD ratings are something that Seagate have been hugely supporting in their ranges for a number of years (they introduced several 1.0 and higher ratings into their Ironwolf and Nytro SSDs of late too). Again, another big win for the Seagate Firecuda 530 over the MSI Spatium M480 –  particularly when you factor in that the FC530 ALSO arrives with 3 years of data recovery services (forensic level) alongside the 5yr warranty too, in their Rescue Recovery services.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Conclusion

It will not come as a huge shock that in comparing the Firecuda 530 and Spatium M480, that the Seagate drive is still largely dominating this comparison and potentially the entire PCIe Gen 4 m.2 market so far. The M480 from MSI is a very good drive that has clearly been geared towards providing gamers and PC professionals some high tier throughput, and it is coming from a brand they already know and trust. However, it is impossible the ignore the comparatively mature decision by Seagate to focus a great deal on endurance and sustained performance and this plays out substantially throughout how these two drives compare and how they will support you later in their lifespan. Yes, the Firecuda 530 arrives at a higher price point, but you get more for your money and the money you save on day 1 with the M480 might end up costing you more in terms of an extra few minutes here or there, every day, week, month and year. If you are on a tighter budget and your NVMe SSD storage requirements are not considered Pro, Business or Enterprise, the M480 will serve you well – but for everyone else, the FC 530 has you covered in spades.

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

Best Performance  
Best Endurance/Durability  
Best Price for TB  
Best Extras  
Best Value  
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 vs Samsung 980 PRO SSD Comparison

16 août 2021 à 16:02

PCIe 4 NVMe SSD Comparison – Samsung 980 Pro vs Seagate Firecuda 530

One industry that continues to exceed all expectations is solid-state drives (SSD). The accepted norms of storage in terms of capacity, speed and durability have wildly eclipsed those early days of SATA and now the combined might of near-total bandwidth utilisation and sophisticated onboard controllers has resulted in an SSDs capable of 20 times the performance of the first generation flash drives (370MB/s x10) and close to 50 times the speed of regular hard drives (150MB/s x50). It sounds insane but now there are SSD that can provide well over 7000MB/s read that are not only well established and available to consumer buyers, but also surprisingly affordable. Into this slowly growing tier of NVMe M2 PCIe Gen 4 SSD storage, two of the biggest players are Samsung and Seagate with their 980 Pro and Firecuda 530 drives. Released almost an entire year apart, these two drives are still among the most often requested media right now in summer 2021 for gamers, video editors and high-performance storage uses. Although similar in preliminary architecture, as both utilise a significantly higher saturation of the PCIe gen4 potential 8,000MB/s bandwidth available, each brand has geared their drives respective development in a different direction and the result is two drives that may seem similar at first but wildly deviate in what they can do at even a cursory examination. So today I want to compare the Seagate Firecuda 530 against the Samsung 980 Pro to help you decide which one deserves your data. 

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.3c
NAND 3D TLC

3D TLC Micron B47R 176L

3D TLC

1xx-layer layer V6 V-NAND 3-bit TLC

Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 Custom Elpis
Warranty 5 Years

5 Years

Samsung introduced the 980 Pro into the market in summer 2020, during the height of the global pandemic, the US trade war and the start of the semi-conductor shortage – so that was ALOT of early friction to overcome. Despite all of this, the drive has gone from strength to strength and is largely the drive of choice in the early client development of PCIe4 m.2 on motherboards thanks to being one of the first on the market and that custom controller allowing them to break the 7,000MB/s barrier in M.2 form factor before practically everyone else. The Seagate uses the late 2020 formally revealed Phison E18-PS5018 controller (also used by a few other SSD manufacturers), whereas Samsung has its own massive in-house R&D manufacture available and has ait’s own unique custom Elpis controller. We talk in a moment about how this impacts their respective performance, but fair play to Samsung for continuing to keep their SSD development 100% in house with this one. Both drives arrive with 5 years of warranty (though their DWPD/TBW do differ noticeably) which is quite standard, but it is worth highlighting that the Seagate Firecuda 530 also arrives with 3years of data recovery services included. Know as the Seagate Rescue Service, it allows you to access professional data recovery services in the event of accidental deletion, reversing corruption and recovery services at no additional cost (there are T& course). It’s a small extra on the face of it, but for anyone that has lost key data (in the case of this drive utility, I am talking 4K raw video, savegames, editing projects, etc), this is a very noticeable extra to have thrown in!

Samsung 980 Pro vs Seagate Firecuda 530 – Price & Capacity

For most casual users, the price per GB/TB and the variety of available capacities are always going to form a decent chunk of the decision-making process! Both the Firecuda 530 and Samsung 980 Pro are available in 500GB, 1TB and 2TB versions, however, the Samsung also arrives in a modest 250GB model (which may well be useful to NAS users for caching or video editors looking for a smaller, faster drive for current projects (moving them to a slower archive as they go). The Seagate Firecuda has very much gone the other way on this and provides a hefty 4 terabyte (double-sided – cells on either side of the M.2 PCB) that, although rather expensive, is still going to be very attractive to buyers who only want to make this kind of purchase ONCE and want it to suitable for long term storage convenience (Professional Gamers/Pro Streamers with larger constant libraries they need to access relatively on the fly and PS5 console owners looking to take advantage of that storage expansion slot). When it comes to the price tag, Samsung 980 PRO has a tremendous advantage with being released almost a year ago (September 2020) and that has given them a great deal of time to saturate the market with their drive and introduce a greater degree of flexible pricing now in 2021. That said, the prices are not quite as far apart as I would have thought – with around $20-30/£10-20 at each storage capacity tier. See below:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Price in $ and $ $139 / £119 $119 / £109
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Price in $ and $ $239 / £199 $209 / £179
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Price in $ and $ $419 / £379 $390 / £369
4TB Model ZP4000GM3A013 N/A
Price in $ and $ $949 / £769 N/A

The Samsung 980 PRO is easily going to be the lower-priced of the two, even if you ignore the RRP of each brand, the 980 PRO will be on sale at one retailer or another just as the Seagate Firecuda 530 gets out of the gate! We will talk a little more about Value later on, but if the pricetag is paramount to you (perhaps you are on a tighter budget or are buying multiple NVMe SSD units) then Samsung win this one easily. However in capacity, these two PCIe 4.0 M.2 SSDs are harder to compare, given they differ ever so slightly. I do like that the Samsung 980 PRO arrives in the smaller 250GB capacity model, as some hybrid storage users or those looking for their OS/Steam Library for 1-2 AAA games, will like this smaller unit at around $89/£70 (though the performance is lesser – important). However, the Firecuda 530 arriving in 4TB is an unignorable power flex from Seagate, being only 1 of 2 PCIe 4.0m.2 NVMe 7,000MB/s+ available in the market (the other being the Sabrent Rocket Plus SB-RKT4P-4TB for $999). Yes, it is a hefty price tag at $949 at launch, but it still works out as $237 per TB, has by FAR the fastest performance of any of the other drives and means you only need to make this purchase ONCE. So, overall, I think the Seagate Firecuda 530 takes the win for its approach to capacity.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Reported Read & Write Speed

NOW we are talking! Moving away from price, let’s talk about what these two top tier NVMe PCIe 4.0 M.2 SSDs can give you in terms of traditional Read and Write performance. Ever since we first started seeing PCIe4 SSDs arrive, it has been a case of how much of the potential 8,000MB/s they could saturate with sophisticated controllers, SDRAM and NAND. The first-gen looked good at 5,000MB/s, but was soon eclipsed when Samsung 980 PRO entered the market last summer/autumn with their 7,000MB/s Read drive. Indeed, although the 250GB and 500GB drives dip slightly to 6,400/6,900MB/s respectively, the 1TB and 2TB models can reach that 7,000MB/s mark, which is great news for gamers that prioritize reading those core game files for streaming/casual gaming. However, their write speeds (a key concern for video editors and advanced content creators in general) largely cap at 5,000MB/s for the most part – still VERY impressive and Samsung have not been secretive about this, but it is still a noticeable difference. The Seagate Firecuda 530 series, thanks to a newer revision of NVMe (NVMe 1.4 over NVMe 1.3c) as well as the 176 layer 3D NAND (improving performance and relative durability, covering later). Samsung don’t disclose the layer count but claim it to be 40% more than their previous generation at 92 layers, so it is assumed to be 128L 3D NAND. The 500GB model from Seagate drops the ball a bit in terms of write speed, at a comparatively lowly 3,000MB/s (which does make the 500GB model much less appealing) but from there, the 1TB, 2TB and 4TB models all massively surpass the majority of other SSD in the market right now, reaching 6,000MB/s – 6,900MB/s in sequential Write and smashing an impressive 7,300MB/s in sequential Read – genuinely staggering and for manufactures to be getting so close to the theoretical 8,000MB/s max of PCie 4×4 M.2 so early cannot be ignored! See below:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Sequential Read (Max, MB/s), 128 KB 7000MB 6900MB
Sequential Write (Max, MB/s), 128 KB 3000MB 5000MB
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5000MB
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 5100MB
4TB Model ZP4000GM3A013 N/A
Sequential Read (Max, MB/s), 128 KB 7300MB N/A
Sequential Write (Max, MB/s), 128 KB 6900MB N/A

As the chart above indicates, Seagate Firecuda 530 almost completely wins the performance comparison for traditional Read/Write activity. Given its later release, slightly higher price tag and increase NAND quality/layers, this is what you would expect and unless Samsung release a new revision of the PRO SSD series in 2021/2022, the Firecuda 530 wins this round in spades.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Reported IOPS

The performance of the Samsung 980 Pro and Seagate Friecuda 530 in terms of IOPS are actually surprisingly similar. Indeed, only the 500GB model ZP500GM3A013 and MZ-V8P500BW give us much difference of note. Both drive manufacturers report that they hit the 1,000,000 input/output operations per second threshold. So that means that these drives pass through data incredibly well. I mention the 500GB model, as the Samsung 980 Pro largely dwarfs the Firecuda 530 at this tier, with twice the random read IOPS and 40% or so more on random write IOPS. I would be interested to see if this is because of NAND placement (as the larger 2TB Firecuda 530 matches the Samsung 980 PRO, but is double-sided)  or total GB per physical cell and more/less over-provisioning in place – but for now we can definitely see that buyers looking for premium IOPS on a 500GB scratch/current-projects drive will see better results on the Samsung 980 PRO (also remember that the 500GB 980 Pro also had superior traditional Write too).  Below is breakdown on the reported IOPS on each drive:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Random Read (Max, IOPS), 4 KB QD32 400,000 800,000
Random Write (Max, IOPS), 4 KB QD32 700,000 1,000,000
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Random Read (Max, IOPS), 4 KB QD32 800000 1000000
Random Write (Max, IOPS), 4 KB QD32 1000000 1000000
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Random Read (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
4TB Model ZP4000GM3A013 N/A
Random Read (Max, IOPS), 4 KB QD32 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 1,000,000 N/A

IOPS are always going to be a tricky measurement of an SSD. Individually (i.e the M.2 NVMe in a single drive-use environment like a console or OS), the IOPS will translate to a much more responsive system. However this is still a question of near-milliseconds and the minute you introduce multiple PCIE4 M.2 SSDs RAID’d into a single system, then the multiplication of these IOPS and bottleneck of the rest of the system will level the playing field massively. The Samsung 980 Pro easily provides the best IOPS and excellent price-vs-R/W throughput on the 500GB level and makes it the clear choice at that capacity. However, in practically all over tiers they are level for the most part and unless you are running these drives in massive sessions individually (ie a streamer or eSport professional running daily 4-6hr sessions), then either of the Samsung 980 Pro or Seagate Firecuda 530 will be a suitable choice at 1TB and higher in terms of responsiveness.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Endurance & Durability

The importance of IOPS and Throughput are all well and good, but how long the SSD can maintain those speeds and operation in general as the years go by is an increasing concern in 2021/2022. The Firecuda 530 and 980 PRO are rated quite differently in terms of Endurance and Durability, so I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and Samsung 980 PRO are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the Samsung 980 PRO and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and Samsung 980 PRO stand on this, as the extra 10-12 months that the Firecuda spent ‘in the oven’ has seemingly produced rather large improvements in it’s predicted lifespan:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Total Terabytes Written (TBW) 640TB 300TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Total Terabytes Written (TBW) 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Total Terabytes Written (TBW) 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
4TB Model ZP4000GM3A013 N/A
Total Terabytes Written (TBW) 5100TB N/A
Mean Time Between Failures (MTBF, hours) 1,800,000 N/A
DWPD 0.7DWPD 0.3DWPD

Whether it is that Phison E18 controller having better-balanced wear management, the  176 layer 3D NAND or just generally more refinement of the handling as PCIe4 m.2 is explored, there is no ignoring that 0.7 drive writes per day of the Firecuda 530 being more than double that of the Samsung 980 Pro. This is not the first time Seagate have prioritized DWPD and TBW in their SSD media (their first entries into 24×7 NAS SSD featuring 1.0DWPD, practically unheard of at that tier) and given that Samsung have some of the most sophisticated and well-engineered in-house R&D operations in the world (only really challenged by WD), it is very surprising this is drive only has a 30% drive fill per day rating. I won’t focus too much on the MTBF (although clearly there are differences) as it is far less relevant as a spec these days, but in summary and in terms of durability, endurance and predicted lifespan – the Seagate Firecuda 530 wins by a country mile here.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Conclusion

The Seagate Firecuda 530 is the more recently released drive of the two and it shows. Samsung heavily occupied the PCIe4 M.2 SSD market when this tier of Prosumer media (at the client-manufacturer level) arrived last year. But, as incredible as it sounds, the Samsung 980 Pro is in danger of looking a little slow as the rest of the market produces their own faster and more enduring alternatives in the Firecuda 530, the MSI SPATIUM M480 and Sabrent Rocket Plus. The Samsung 980 Pro still an incredible feat of development and construction, but much like my comparison of the Firecuda 530 and WD Black SN850, entering the market before full widespread adoption of your kind of product is better established can sometimes lead to competitors being given more time to overtake. Adoption of PCIe 4.0 M.2 SSD is still by no means ‘standardised’ and even now, numerous mobo manufacturers taht support the technology either do so using bandwidth sharing on the board OR choose to dedicate those potential PCIe 4.0 lanes to a traditional PCIe upgrade slot over M.2.The Samsung 980 Pro is an EXCELLENT SSD and provides the best price for this kind of performance at every capacity tier (not just compared with the Firecuda 530, but against pretty much ALL of the other PCIe4 M.2s on the market right now) which is thanks in a big way to it’s earlier release than most. However, it is impossible to ignore that the Seagate Firecuda 530 has used that extra time in development very wisely and has produced a higher-performing drive for the most part, with a much more enduring lifespan and ultimately better VALUE overall. I recommend buying the Firecuda 530 right now or wait until Samsung revisit their PRO series to see how where they can push things even further!

 

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

Best Performance
Best Endurance/Durability
Best Price for TB
Best Extras
Best Value
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Gigabyte AORUS 7000s NVMe SSD Review – Ground Breaking or Game Breaking?

12 août 2021 à 14:45

Review of the Gigabyte Aorus 7000s PCIe Gen 4 NVMe SSD

Remember when PCIe Gen 4 m.2 NVMes were a new thing? Doesn’t seem that long ago, does it? In fact, the first generation of M.2 SSDs to take advantage of the 8GB/s possible via PCIe 4×4 is barely a year old and in the first half of 2021, we saw the 2nd generation quickly obliterate our understanding of what an SSD can do, with the Aorus 7000s from Gigabyte is a great example of this. Although by no means the first the take a stab at the 7GB/s Seq Read SSD market (with the WD Black SN850, Samsung 980 Pro and Sabrent Rocket 4 Plus getting their products to market before everyone else), it does arrive with hardware architecture, top-end performance and a price point that gives those other brands SSDs something to stop and think about. Plus it is now on the PS5 SSD compatibility list, so many keen gamers will be considering it for their next big storage upgrade. The Aorus 7000s is an SSD by motherboard manufacturer Gigabyte who know a thing or two about PC architecture, but how much of this lends well to NAND based storage? They are utilizing the popular Phison E18 controller, 96 layer 3D TLC Micron NAND and DDR4 memory on their tiny 2280 SSDs, so things look good on the spec sheet, but how good is the Aorus 7000 SSD in reality? Let’s have a close look at this SSD and decide whether the 7000S deserves your data?

Gigabyte Aorus 7000s SSD Review – Quick Conclusion

You cannot fault the Aorus 7000s NVMe SSD for its performance in 2021/2022, as it does not over-promise on what it can do. We ran all our usual tests and it hit the highs and lows of Throughput and comparative IOPS to others, just as the brand volunteered. The Gigabyte Aorus is a mature and grown-up SSD and not one that is trying to challenge bigger drives like the Seagate Firecuda 530. Had it been released a few months earlier, it would have made a significantly bigger splash on the professional gaming and video editing market, but now runs the sight risk of getting lost in the paddock of Phison E18 SSDs that are arriving on the market around this. The Aorus’ price point and availability certainly make it appealing, but the shaky SSD market making a slow recovery from Pandemic changes, Chia stock issues and semiconductor shortages means this SSD might not be as desirable as it should be when it is not as abundant at the manufacturing level as the likes of Seagate, Samsung and WD’s offerings being so copious. This IS a good SSD and although the IOPs are a touch lower than I would like, its durability, performance at both 1TB and 2TB and inclusive slimline prosumer heatsink make it a very good drive indeed!

PROs of the Gigabyte Aorus 7000s CONs of the Gigabyte Aorus 7000s
Genuinely Impressive Performance

Made by a Gamer Mobo Preferred Manf

PS5 Compatibility Confirmed

Heatsink Included and PS5 Compatible

96 Layer 3D TLC NAND Hugely Beneficial

Phison E18 SSDs Always Delivery!

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) is unimpressive

Still Outperformed by the Firecuda 530

Gigabyte Aorus 7000s SSD Review – Packaging

The Aorus 7000S arrives in a petite 2 stage card box retail box. The shiny holographic logos and text immediately throw me back to my childhood and I would be lying if I said I didn’t spend a few extra seconds playing with it in the light- sue me! It is quite a tight fit and there is not a vast amount inside.

The Aorus arrives with an inclusive first-party heatsink which arrives pre-applied and sealed by 4 screws. I was immediately impressed by this heatsink and it toes a fine line between effectiveness and sharp design, whilst still arriving surprisingly compact. Indeed in recent weeks, I have been talking about heatsinks more and more (like the use of M.2 NVMe SSD has become increasingly mainstream and people do not know how VITAL these things are).

Let’s be clear, M.2 NVMe SSD heatsinks are NOT expensive, ranging from $8 for the most basic to higher-end engineering examples at $20-30. The Aorus SSD heatsink is compatible with many $15 examples and does certainly give you a feeling of quality. Indeed, the fact some SSDs arrive with optional heatsinks, given the affordable price point, seems crazy to me. Yes, there is the argument that users might already own their own prosumer heatsink or using a compact/custom setup that has its own heat dissipation methods, but the larger portion of the audience would have to faff about getting another one. So yeah, kudos to Gigabyte (again, motherboard manufacturers – important there!) for including this and making an effort on it!

The Aorus 7000s is a 2280 length SSD and it is completely contained in the 2 part surround heatsink.

There is a good level of ventilation space on both the top and sides of the heatsink, whilst still ensuring not to rise the M.2 key connector (something of a problem with larger heatsinks and double-sided SSDs).

Indeed, the M.2 connector is the ONLY part not completely covered in heat dissipation panels. The Aorus 7000s 1TB is a single-sided NVMe SSD, but both sides of the drive are buffed with thermal panelling.

Removing the four screws on the sides of the Aorus 7000s heatsink was quick work, however, the surrounding metal heatsink cage is tightly connected together and removing the SSD from both heatsink panels and thermal pads was actually a lot harder than you might think.

indeed, the Aorus 7000s SSD is so tightly caged in this petite heatsink that the indentation of the chips on the thermal panels is remarkably defined! There is little to no overspill and I can definitely say this is a very slick application (which I have now spoiled) and leaves me feeling confident in how well it will protect the drive in use from temp rises.

Interestingly, if you line the heatsink and Aorus 7000s up, you can see that the additional flow lines of the top line up directly over the Phison E18 and 1GB DDR4 memory, which is exactly what I like to see for focused airflow/dissipation. This is a nice little design mark and something that many could easily blink and miss.

Removing the heatsink entirely, we can take a much closer look at the Gigabyte Aorus 7000s chips on the 2280 PCB. Again this SSD is single-sided, so the distribution of the NAND, Memory and controller are all lined up neatly.

The other side is the bare board. Larger capacities will of course take advantage of this additional space.

So that is the physical design of the Aorus 7000s SSD. But what about the hardware components themselves? Does the Gigabyte Aorus 7000S cut the mustard in terms of current generation hardware and protocols? Let’s find out.

Gigabyte Aorus 7000s SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of 7,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the Aorus 7000s are quite modern. Indeed, for all the big talk of the Seagate Firecuda 530 hardware (still currently the ‘score to beat’ PCIE Gen4 m.2 NVMe right now) being top tier, the Gigabyte Aorus 7000s is pretty darn similar on the spec sheet! Below is how it looks:

Brand/Series AORUS Gen4 7000s
PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.4
NAND B27 3D NAND 96L
Max Capacity 2TB
Controller Phison E18-PS5018
Warranty 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Gigabyte Aorus 7000S SSD Series

The first big, BIG thing to remember here is the controller, that Phison E18. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. This controller is one of the biggest reasons that the Gigabyte Aorus 7000s can actually backup it’s promises about the 7,000MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Gigabyte Aorus 7000s is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the Gigabyte Aorus 7000s does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for the Aorus 7000S SSD.

Much like the Controller on the Aorus 7000s being the ‘CPU’, it also has an area of memory. The Gigabyte Aorus SSD uses 1GB DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier.

As mentioned, both available capacities of the Gigabyte Aorus 7000s arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact they arrive on single-sided SSD boards is very impressive. Physical storage NAND is distributed evenly in order to space out the storage and allow even cooling, NAND wear and performance. Do remember that this means you won’t need to be so attentive in provisioning for heat dissipation on both sides of the NVMe M.2 SSD, as the 7000S includes a decent heatsink anyway that uses a metal surrounding heatsink and base level thermal heat pads, this is all largely taken care of.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Gigabyte Aorus 7000s takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Gigabyte Aorus 7000s use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Gigabyte Aorus 7000s, as it is still (2-3 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Gigabyte Aorus 7000s, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Gigabyte Aorus 7000s SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Gigabyte Aorus 7000s SSD arrives in two capacities at 1TB and 2TB. The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the current price of both models around 20-30%!. Below is a breakdown of how each Aorus 7000s SSD compares:

Brand/Series

 

AORUS Gen4 7000s

AORUS Gen4 7000s

PRICE GP-AG70S1TB GP-AG70S2TB
Price in $ and $ $199 / £189 $359 / £399
Throughput GP-AG70S1TB GP-AG70S2TB
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB
IOPS GP-AG70S1TB GP-AG70S2TB
Random Read (Max, IOPS), 4 KB QD32 350,000 650,000
Random Write (Max, IOPS), 4 KB QD32 700,000 700,000
ENDURANCE GP-AG70S1TB GP-AG70S2TB
Total Terabytes Written (TBW) 700TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,600,000 1,600,000
DWPD 0.38DWPD 0.38DWPD

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used, rather than the 64 Layer used by competitors. This is an important point because Gigabyte has significantly less pedigree in SSD media than the likes of Samsung, WD and Seagate (being much better know for motherboard manufacturing) and people will want to know they are going to get a product that lasts!

However, despite the use of the Phison E18 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower than those reported by their competitors. Indeed, the Gigabyte Aorus 7000s is one of the few E18 SSDs that does not crossing into the reported 1 Million IOPS mark, maxing out at 700k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Sabrent Rocket 4 Plus, the MSI Spatium M480, the ADATA Gammix S70 and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the Gigabyte Aorus 7000s is the Seagate Firecuda 530. However, the Gigabyte SSD has been available in the market for almost 3-4 months longer and has certainly embedded itself in the market at that time a fraction more. Below is how these two drives compare:

Brand/Series

 

AORUS Gen4 7000s

AORUS Gen4 7000s

Seagate Firecuda 530

Seagate Firecuda 530

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L 3D TLC Micron B47R 176L 3D TLC Micron B47R 176L
Max Capacity 2TB 2TB 4TB – Double Sided 4TB – Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Warranty 5yr 5yr 5yr + Rescue 5yr + Rescue
Brand/Series AORUS Gen4 7000s AORUS Gen4 7000s Seagate Firecuda 530 Seagate Firecuda 530
PRICE GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Price in $ and $ $199 / £189 $359 / £399 $239 / £199 $419 / £379
Throughput GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB 7300MB 7300MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6000MB 6900MB
IOPS GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Random Read (Max, IOPS), 4 KB QD32 350,000 650,000 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 700,000 700,000 1000000 1,000,000
ENDURANCE GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Total Terabytes Written (TBW) 700TB 1400TB 1275TB 2550TB
Mean Time Between Failures (MTBF, hours) 1,600,000 1,600,000 1,800,000 1,800,000
DWPD 0.38DWPD 0.38DWPD 0.7DWPD 0.7DWPD

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda release is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Let’s get the Gigabyte Aorus 7000s on the test machine!

Testing the Gigabyte Aorus 7000s 1TB m.2 PCIE4 NVMe SSD

The Gigabyte Aorus 7000s 1TB was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the Gigabyte Aorus 7000s over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

ImportantIt became quite clear in early testing that my test machine, despite being quite high powered, was still not quite enough to get the truest speed out of this SSD. Factors such as my OS drive being a SATA drive, capture software, embedded graphics rather than GPU card resulting in the larger graphical file testing being fractionally capped, meaning that although this drive maxed at 6,995MB/s Seq Read on my system, it definitely felt that it could have gone a pinch higher and broken into the 7,000MB/s with a more powerful system. That said, these higher benchmarks are generally allied to larger/sequential data (i.e BIG single files) and you should really focus on smaller random benchmarks. I wanted to add this disclaimer.

REVIEW VIDEO

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 41C between each test being conducted.

CRYSTAL DISK SPECS

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The Read and Write easily hit the 6,000MB/s+ area and hit 6,590MB/s Read but 4960MB/s write. However, the bottleneck of my system capped this in ATTO quite noticeably. Additionally, the IOPS benchmarks in ATTO for the Gigabyte Aorus 7000s were good, but as expected, not breathtaking. Next, I repeated these tests with a 1GB test file.

The larger test file, unsurprisingly, produced higher results of sequential Read/Write at 6,590MB/s and 4,980MB/s respectively – that write is still a pinch less than I would like to see, even at 1TB over PCIe with the Phison E18. The IOPS still maintained a similar level as before.

Finally, I completed the ATTO Benchmark tests with a 4GB Test file and the performance remained consistent:

Finally, to conclude the ATTO testing, I switched to a bigger 4GB file and re-ran the program. This ended up maxing out at a read/write of 6,590MB/s and 6,585MB/s respectively – which although still not cracking the reported 7,000MB/s is still mighty impressive.

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. 1GB file test files provided:

Although this never crossed into the 7,000MBs mark (I suspect down to my test hardware), both in the 1GB test and when I tested the 4GB test file routine, we saw increased benchmark scores 6,975MB/s Read and 5,508MB/s Write, as well as increased IOPS reported. Given the 1TB Gigabyte Aorus 7000s model is rated at 7,000/5,500MB/s, this is remarkably close to hitting the maximum reported benchmark!

Finally, I went for the biggest test file at 16GB on AS SSD and this still gave some solid results and although the IOPs were a pinch lower, this might have hit closer to that reported 700/350K with use of a Xeon test machine:

Next, I switched to AS SSD for benchmarks. First up was 1GB file testing, both on sequential and 4K random:

The results were a pinch lower than I would have liked to see, so I then moved onto the 3G test file. These were noticeably better, both in transfers and 4K random:

I decided to chase this a little further and upped the ASS SSD Test file to 5GB and was pleased with the results. Still ‘on paper’ not as high as the Crystal Diskmark tests.

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

256MB AJA File Test Results (Max) = 5,907MB/s Read & 5,400MB/s Write

1GB AJA File Test Results (Max) = 5,881MB/s Read & 5,427MB/s Write

4GB AJA File Test Results (Max) = 5,974MB/s Read & 5,372MB/s Write

16GB AJA File Test Results (Max) = 5,974MB/s Read & 5,427MB/s Write

Overall, the Gigabyte Aorus 7000s was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims.

Gigabyte Aorus 7000s SSD Review – Conclusion

It is very hard to find any real fault in the Gigabyte Aorus. I know that sounds spectacularly restrained praise, but that is only because the Aorus 7000s finds itself in a rather more densely populated tier of the industry than it should have been! The architecture, performance, endurance and build are definitely impressive and give me a tremendous sense of confidence in the product, but because it is so similar to other SSDs like the MSI SPATIUM M480 and Sabrent Rocket 4 Plus, it blends in with them, rather than standing out on its own merit. I DO like the Aorus 7000s, genuinely love the inclusive heatsink (not just the fact it is included, but the quality of the thing!) and would DEFINITELY recommend it. I just wish it could stand out from the crowd a little more!

You cannot fault the Aorus 7000s NVMe SSD for its performance in 2021/2022, as it does not over-promise on what it can do. We ran all our usual tests and it hit the highs and lows of Throughput and comparative IOPS to others, just as the brand volunteered. The Gigabyte Aorus is a mature and grown-up SSD and not one that is trying to challenge bigger drives like the Seagate Firecuda 530. Had it been released a few months earlier, it would have made a significantly bigger splash on the professional gaming and video editing market, but now runs the sight risk of getting lost in the paddock of Phison E18 SSDs that are arriving on the market around this. The Aorus’ price point and availability certainly make it appealing, but the shaky SSD market making a slow recovery from Pandemic changes, Chia stock issues and semiconductor shortages means this SSD might not be as desirable as it should be when it is not as abundant at the manufacturing level as the likes of Seagate, Samsung and WD’s offerings being so copious. This IS a good SSD and although the IOPs are a touch lower than I would like, its durability, performance at both 1TB and 2TB and inclusive slimline prosumer heatsink make it a very good drive indeed!

PROs of the Gigabyte Aorus 7000s CONs of the Gigabyte Aorus 7000s
Genuinely Impressive Performance

Made by a Gamer Mobo Preferred Manf

PS5 Compatibility Confirmed

Heatsink Included and PS5 Compatible

96 Layer 3D TLC NAND Hugely Beneficial

Phison E18 SSDs Always Delivery!

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) is unimpressive

Still Outperformed by the Firecuda 530

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 vs WD Black SN850 SSD Comparison

11 août 2021 à 16:25

PCIe 4 NVMe SSD Comparison – WD Black SN850 vs Seagate Firecuda 530

If you have recently purchased a modern generation gaming PC, Video setup or new generation console, then chances are that when looking at optimal storage media for your system, you likely narrowed your choices down to the Seagate Firecuda 530 (released in summer 2021) or the WD Black SN850 (released in Winter 2020) SSD. Although these two drives look incredibly similar to numerous M.2 media that came before, these solid-state NVMe drives represent the highest-performing PCIe 4.0 that either brand’s respective gamer/prosumer series have to offer, each hitting (and in some cases exceeding) 7,000MB/s performance. Both of these drives are able to exceed pretty much all of the understood maximums thanks to several key factors in their architecture. That said, that very modern architecture varies quite wildly as soon as you take even a casual glance at the specifications and its impacts on performance, durability and capacity is actually quite significant. So, today I want to take a good look at the Firecuda 530 and WD Black SN850 SSD to see whether they excel, where they fall short of their competitor and, ultimately, which one deserves your data! First up, let’s take a look at the early architecture here:

Brand/Series Seagate Firecuda 530

WD Black SN850

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4
NAND 3D TLC Micron B47R 176L BiCS4 96L TLC
Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 WD_BLACK G2
Warranty 5yr 5yr
 

So, one of the earliest differences between each drive as we can see is the NAND being utilized and laters. Both use TLC 3D Memory (par of the course for 2021 – finding a good line between capacity, performance and durability over MLC/QLC on either side of the scale) but there Seagate Firecuda 530 uses the higher-performing 176L vertically stacked layers, allowing greater performance and greater capacity per physical cell (with the Seagate Firecuda 530 SSD having a current capacity cap of 4 Terabytes and the WD Black at 50% less on 2TB). For those confirmed with endurance (which we will touch on later on) the 176L over the 96L does not result in negatives on durability (quite the opposite in fact) and both of these SSDs are managed by impressive top tier controllers. The Seagate uses the late 2020 formally revealed Phison E18-PS5018 controller (also used by a few other SSD manufacturers), whereas WD has its own massive in-house R&D manufacture available and has ait’s own unique WD Black G2 controller. We talk in a moment about how this impacts their respective performance, but fair play to WD for continuing to keep their SSD development 100% in house with this one. Both drives arrive with 5 years of warranty (though their DWPD/TBW do differ noticeably) which is quite standard, but it is worth highlighting that the Seagate Firecuda 530 also arrives with 3years of data recovery services included. Know as the Seagate Rescue Service, it allows you to access professional data recovery services in the event of accidental deletion, reversing corruption and recovery services at no additional cost (there are T& course). It’s a small extra on the face of it, but for anyone that has lost key data (in the case of this drive utility, I am talking 4K raw video, savegames, editing projects, etc), this is a very noticeable extra to have thrown in!

WD Black SN850 vs Seagate Firecuda 530 – Price & Capacity

For many users, the size of an SSD and the price tag is going to be the most compelling argument one way to another on the best drive for their needs. Though the price you pay and the total storage ARE important, SSD like the WD Black SN850 and Seagate Firecuda 530 are much more than that. That said, it is fair to say that the WD Black SN850 provides the best price per GB/TB on every tier (500GB, 1TB and 2TB). Although there are regional differences that go beyond currency conversion (see the 2TB in £ vs $) and recent hardware shortages because of semiconductor shortages and Chia also played their part, the fact the WD Black arrived on the market 6+ months early has resulted in the price being a little more flexible right now – leading to it being at the lower price.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Price in $ and $ $139 / £119 $119 / £99
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Price in $ and $ $239 / £199 $249 / £169
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Price in $ and $ $419 / £379 $399 / £339
4TB Model ZP4000GM3A013  
Price in $ and $ $949 / £769 N/A

However, there capacity differs slightly, with the Seagate Firecuda 530 NVMe SSD arriving at the larger 4TB – though at an eye-watering price point! If the cost of the SSD is an absolutely huge factor in your decision, the WD BLACK SN850 SSD clearly wins here, however it is worth taking a moment to read further to see what you get for your money – as, in some of the higher tiers, the difference between Price and Value is a great deal clearer.

 

WD Black SN850 vs Seagate Firecuda 530 – Reported Read & Write Speed

Whereas the WD Black SN850 took a remarkably strong and clear early lead over the Seagate Firecuda 530 in terms of price, things take an immediate reverse in terms of performance between them. The reported maximum sequential Read and Write throughput on these drives from either brand is almost completely a win for Seagate and the Firecuda 530 in all but the 500GB. Now some of this credit can clearly be dedicated to that Phison E18 controller and 176 layer 3D NAND, but also the 2TB and 4TB SSDs feature double-sided cells (ie the chips are on either side) disturbing the read/write activity a bit. That NAND also provides some great durability (will touch on later) but the clear increase on the Firecuda 530 over the WD Black SN850, especially in the write activity as you rise through each capacity tier is remarkably impressive and only really rivalled by similar SSDs like the MSI Spatium, Sabrent Rocket Plus and Gigabyte Aorus Gen4 7000s.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB 3000MB 4100MB
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5300MB
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 5100MB
4TB Model ZP4000GM3A013  
Sequential Read (Max, MB/s), 128 KB 7300MB N/A
Sequential Write (Max, MB/s), 128 KB 6900MB N/A

The WD Black NVMe PCIe 4×4 SSD certainly holds its own, maintaining that solid 7000MB/s write, but reported write speeds to seem a tad inconsistent at each GB/TB tier and fall behind significantly at each comparable Firecuda 530 drive (with the exception of the 500GB WDS500G1X0E model).

 

WD Black SN850 vs Seagate Firecuda 530 – Reported IOPS

A much more SSD specific measurement, IOPS, shows us a much more even playing field on the reported performance, with advantages and disadvantages on both sides. One immediate plus for both the WD Black SN850 and Seagate Firecuda 530 is that they both break the 1 Million IOPS threshold respectively at the 1 Terabyte tier, with even the lowly 500GB WD Black SN850 managing to hit the 1M Random Read IOPS, more than double the reported Random Read IOPS of the Firecuda SN850. However the Seagate Firecuda 530 then maintains the 1M IOPS breakpoint, first in Write at the 1TB level and then continues to provide 1,000,000 Read and Write on the Terabyte tiers – with the WD Black capping at 1M/700K on those same tiers.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 400,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 700,000 680,000
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1000000 720,000
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 710,000
4TB Model ZP4000GM3A013  
Random Read (Max, IOPS), 4 KB QD32 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 1,000,000 N/A

Although IOPS are a tough and extremely relative-to-file’ method of measurement in real-world practice, the benefits of that E18 controller and NAND choice by Seagate here on the 530 are another win – though only JUST!

 

WD Black SN850 vs Seagate Firecuda 530 – Endurance & Durability

Unlike the other points in this comparison of the Firecuda 530 and SN850, the Endurance and Durability of an SSD is an area that is overlooked often enough that I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability and endurance in 2021/2022 is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and WD Black SN850 are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the WD Black SN850 and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and WD Black SN850 stand on this:

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Total Terabytes Written (TBW) 640TB 300TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Total Terabytes Written (TBW) 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Total Terabytes Written (TBW) 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
4TB Model ZP4000GM3A013  
Total Terabytes Written (TBW) 5100TB N/A
Mean Time Between Failures (MTBF, hours) 1,800,000 N/A
DWPD 0.7DWPD N/A

And that is a very clear win for the Seagate Firecuda 530, with its significantly longer predicted lifespan for writing in its 5-year reported warranty period. Of course, if you are not going to be fully replacing the data on your drive on a regular basis, then you may not be concerned about the 0.7DWPD on the Firecuda 530 over the 0.3DWPD on the SN850, which is understandable. However, I would highlight that for Seagate to state that this SSD will maintain the reported performance benchmarks, as well as that durability is no small thing and although they cost more per GB/TB, you can see that this is where that extra money is seemingly going.

 

WD Black SN850 vs Seagate Firecuda 530 – Conclusion

Comparing two SSDs like the Seagate Firecuda 530 and the WD Black SN850, although very similar in base architecture, may seem a little mean-spirited. There is clearly more than half a year of difference in when these two SSD were introduced to the market and in terms of technology, that is pretty huge. However, now that more and more affordable motherboards are integrating PCIe Gen 4 in their systems, modern home gaming consoles like PS5 are featuring storage expansions for PCIe 4×4 m.2 and even NAS brands are slowly approaching PCIe 4 in their servers, I think more people are going to compare these two high-end drives. the WD Black SN850 is very well priced right now, providing PCIe 4.0 Speeds at the same price as many PCIe 3.0 drives, with blanket 7,000MB/s Read performance on all models, cracking the 1Million IOPS threshold even on smaller capacities and getting head start on the PCIe4x4 M.2 NVMe market. However, given the large number of 7,000MB/s Read and 6,500-6,800MB/s Write drives that have been unveiled in the last 3 months, the WD Black may have arrived the tiniest bit TOO early to the party, before manufacturers could properly catch up (blame Covid, blame shortages, blame trade wars, blame Chia, you name it, it happened!). the Seagate Firecuda 530 on the other hand has arrived at the time when the latest generation on the kit that desires this kind of storage has been re-tooled and means it is very well placed. That isn’t to say that the Firecuda 530 gets by on luck, no, the incredible durability increase, consistent high performance on R/W and even arriving with a 4TB model off the bat make it a very convincing choice to ultimately win in this comparison. The data recovery stuff (for the few people that may actually use it) is a cherry on the cake too.

Brand/Series Seagate Firecuda 530

WD Black SN850

Best Performance  
Best Endurance/Durability  
Best Price for TB  
Best Extras  
Best Value DRAW DRAW
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Sabrent Rocket 4 Plus SSD Review – Gamer Ready?

5 août 2021 à 16:00

Review of the Sabrent Rocket 4 Plus PCIe Gen 4 NVMe SSD

2021 has been a real boom year for super-fast SSD storage and one drive that has seemingly come out of nowhere to being EVERYWHERE is the Sabrent Rocket 4 Plus SSD. Although it could be argued that many areas of consumer technology has stagnated during the pandemic in terms of research and development, solid-state drives (SSDs) have gone from strength to strength and this year we have seen some of the biggest and fastest evolutions in this technology arrive in front of consumers worldwide, with few creating the same waves of surprise of the Sabrent Rocket 4 Plus! Sabrent, who was once better known for their enclosures and docking stations, a few years ago go to made big moves into their own range of affordable yet high performing PCIe4 SSD and their latest release has really thrown a cat among the bigger pigeons of Samsung, WD and Seagate. Arriving with the new cutting edge Phison 18 controller, Micron 96 layer 3D TLC NAND and PCIe Gen 4 x4 architecture, it is easy to see why this comparatively unheard of brand in SSD has got a lot to shout about. This has increased considerably now that the PS5 Storage Upgrade update is available to many users and the Sabrent Rocket 4 Plus is fully compatible, leading to many users comparing this drive against the Samsung 980 Pro, WD Black SN850 and Seagate Firecuda 530 for their big console upgrade! Today we want to talk about what you get for your money, what the Sabrent Rocket 4 Plus can do and what it can’t do. Let’s find out if the Sabrent Rocket 4 Plus deserves your data.

Sabrent Rocket 4 Plus SSD Review – Quick Conclusion

The Sabrent Rocket 4 Plus is not a drive that exaggerates on its spec sheets. With a number of new PCIe 4 M2 SSD arriving throughout 2021, you could easily assume that this SSD and its comparatively short pedigree in the solid-state drive industry when compared against giants like Samsung and Seagate, would get lost in the noise. I’m pleased to confirm that the Rocket 4 Plus is as high-performing as the brand states and now it has appeared on the PS5 SSD compatible storage list, is definitely worth checking out. It is by no means perfect, with reported IOPS noticeably lower than its competitors in the 980 Pro and Firecuda 530, as well as a noticeable price increase over the previous generation SSDs (somewhat unavoidable I guess), the Rocket 4 Plus may seem like something of a gamble for those who who have remained brand loyal with longer-established brands till now. However the performance of this SSD more than justified its existence and as long as you are prepared to overlook a rather awkward warranty registration hurdle, I can certainly recommend the Sabrent Rocket 4 Plus for PC Gamers, Video Editing Professionals and Playstation 5 Console Upgrades in 2021/2022.

PROs of the Sabrent Rocket 4 Plus CONs of the Sabrent Rocket 4 Plus
Genuinely Impressive Performance

One of the Affordable 7,000MB/s Drive on the Market

PS5 Compatibility Confirmed

Decent Amount of DDR4 Memory Cache

96 Layer 3D TLC NAND Hugely Beneficial

One of the Earliest Phison E18 SSDs

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) has dipped noticeably since it’s predecessor

Still Outperformed by the Firecuda 530

Warranty (1yr unless registered) seems needlessly complex

 

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ 1TB – $200 2TB – $469.99 4TB – $999.99
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L B27 3D NAND 96L
Capacity 1TB Single-Sided 2TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018

Sabrent Rocket 4 Plus SSD Review – Packaging

When Sabrent sent me the Rocket 4 Plus SSD, one of the first things that struck me was that the retail box is absolutely tiny. I know that should not come as a big surprise given how small formed factor m2 actually is, but even in 2021, these drive will typically arrived in boxes 3 or even for times this size and normally because they include additional manuals, as well as structured packaging that ensures that SSD is projected in transit. So the fact that this £1,000 SSD arrived in a box this small definitely gave me pause for thought.

However, my fears were immediately put to rest as soon as I opened the box and found that the Rocket 4 Plus SSD arrives in a rather smart looking metal hinged box casing. This rose gold packaging contained the SSD, surrounding pre-cut foam and installation guide. This was definitely a nice touch and certainly a step up in presentation when compared to do numerous other m2.SSD reviewed in the past.

Important – The photos for this review were taken AFTER the video review took place. I wanted to highlight this as during the video review I removed the adhesive labels on either side of the SSD in order to show the individual components onboard. This has resulted in the branded label and metallic front panel being less flush than it was when the drive was originally received and I take full responsibility for this. In particular, the metal panel was a great deal smoother before I got my grubby paws all over it.

The front logo display label on this SSD is actually quite a sturdy metallic panel that covers a number of key PCB components. This again is something I have not really seen any other brand do and although it is by no means industrial in quality, still quite impressed with this neat little design touch and I would argue assisted heat dissipation a tad too.

The other side is a little more mainstream and features A branded and model identifying sticker for this SSD. It is worth highlighting that removing either of these labels will result in the SSD potentially avoiding it warranty due to tampering, so although I am going to remove these labels 2 to give you a better look at the controller, NAND and other components, I do not recommend you do this.

As the model being reviewed today is the 4TB (4000GB) Rocket 4 Plus Sabrent SSD, it is worth highlighting that this is a double-sided SSD. This should definitely be a factor for those who wish to utilise additional keep thermal padding and heatsinks around this SSD in their PC, NAS or PS5 systems. Indeed, there is an additional high-quality sync available to ensure this Drive maintains optimal operational temperatures in your system for around £25. However this heatsink raises the height of the M.2 connector a couple of millimetres, so be aware (mainly PS5 owners)

The storage NAND, Phison E18 controller and DDR4 memory that this Drive arrives with as are well distributed on either side of this SSD and you are not left feeling like this is a cheap, sub-brand product. Let’s take a moment to have a closer look at the key SSD components that help this SSD break the proposed 7,000MB/s Sequential Read barrier.

Sabrent Rocket 4 Plus SSD Review – Hardware Specifications

Given the length of time that the Sabrent Rocket 4 Plus has been available (since March/April 2021), it is very surprising how similar the hardware it features compares to SSDs released in the last few months (such as the MSI M480, Gigabyte AORUS 7000s and Corsair MP600). iNDEED, Sabrent were one of the very first PCIe 4 M.2 SSDs on the market to take advantage of the Phison E18-PS5018 high-end controller. Alongside this, they are using noticeably denser NAND than many others and are even one of the very very M.2 PCIe SSD on the market right now at 2280 length available in 4TB (which most capping at 2TB). Let’s take a look at the architecture of the range:

SABRENT Rocket 4 +

SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND Micron B27 3D NAND 96L Micron B27 3D NAND 96L Micron B27 3D NAND 96L
Capacity 1TB Single Sided 2TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Memory 1GB 2GB 4GB
Size 2,280 2,280 2,280
Warranty 5yr 5yr 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Sabrent 4 Rocket Plus SSD Series

The first big, BIG thing to remember here is the controller, that Phison E18. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. This controller is one of the biggest reasons that the Sabrent Rocket 4 Plus can actually make it’s promises about the 7,000MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Sabrent Rocket 4 Plus is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the Sabrent Rocket 4 Plus does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for the Sabrent SSD.

Much like the Controller on the Rocket 4 Plus being the ‘CPU’, it also has an area of memory. The Sabrent SSD uses DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB, 2TB and 4TB SSD you use, but starts at an impressive 1GB of DDR4 at the lowest tier.

As mentioned, all three available capacities of the Sabrent Rocket 4 Plus arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact they were able to get 4TB on a 2280 SSD (and still not useless useful QLC NAND to make up the difference) is very impressive. The 2TB and 4TB models both use double-sided NAND distribution (so the cells are on either side), in order to space out the storage and allow even cooling, NAND wearing and performance. Do remember that this means you will need to provision heat dissipation on both sides of the NVMe M.2 SSD, using a metal surrounding heatsink OR thicker base level thermal heat pads.

Fianlly, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Sabrent Rocket 4 Plus takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Sabrent Rocket 4 Plus use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Sabrent Rocket 4 Plus, as it is still (4 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Sabrent Rocket 4 Plus, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Sabrent Rocket 4 Plus SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Sabrent Rocket 4 Plus SSD arrives in three capacities at 1TB, 2TB and 4TB. That last one is quite impressive, especially given that very few brands of M.2 NVMe SSD at 2280 arrive above. The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic and Chia have affected SSD availability in the last 12 months. Below is a breakdown of how each rocket 4 plus SSD compares:

 

SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ $199 / £180 $469 / £419 $1099 / £999
Total Terabytes Written (TBW) 700TB 1400TB 3000TB
Mean Time Between Failures (MTBF, hours) 1600000 1600000 1600000
DWPD 0.4DWPD 0.4DWPD 0.4DWPD
Random Read (Max, IOPS), 4 KB QD32 350000 650000 650000
Random Write (Max, IOPS), 4 KB QD32 700000 700000 700000
Sequential Read (Max, MB/s), 128 KB 7000MB 7100MB 7100MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6850MB

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used, rather than the 64 Layer used by competitors. This is an important point because Sabrent has previously been noted at having lower durability in earlier releases in their portfolio and this is a marked improvement.

However, despite the use of the Phison E18 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower than those reported by their competitors. Indeed, the Sabrent Rocket 4 Plus is the only SSD not to cross into the reported 1 Million IOPS mark, maxing out at 700k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Corsair MP600, the MSI Spatium M480, the ADATA Gammix S70 and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the Sabrent Rocket 4 Plus is the Seagate Firecuda 530. However, the Sabrent SSD has been available in the market for almost 5 months longer and has certainly embedded itself in the market in that time. Below is how these two drives compare:

SSD Family/Brand
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5500MB
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7100MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7100MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Random Read (Max, IOPS), 4 KB QD32 800000 350000
Random Write (Max, IOPS), 4 KB QD32 1000000 700000
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700000
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700000
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Total Terabytes Written (TBW) 1275TB 700TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Total Terabytes Written (TBW) 2550TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Total Terabytes Written (TBW) 5100TB 3000TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda release is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Let’s get the Sabrent Rocket 4 Plus on the test machine!

 

Testing the Sabrent Rock Plus 4TB m.2 PCIE4 NVMe SSD

The Sabrent Rocket 4 Plus 4TB was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times and an additional test was conducted on a Samsung 980 Pro 250GB and Seagate Firecuda 120 1TB SATA SSD in order to give then tests some perspective of scale (full details of this are shown in the YouTube Review of the Sabrent Rocket 4 Plus over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

 

ImportantIt became quite clear in early testing that my test machine, despite being quite high powered, was still not quite enough to get the truest speed out of this SSD. Factors such as my OS drive being a SATA drive, capture software, embedded graphics rather than GPU card resulting in the larger graphical file testing being fractionally capped, meaning that although this drive maxed at 6,980MB/s on my system, it definitely felt that it could have gone a pinch higher and broken into the 7,000MB/s with a more powerful system. That said, these higher benchmarks are generally allied to larger/sequential data (i.e BIG single files) and you should really focus on smaller random benchmarks. I wanted to add this disclaimer.

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 41C between each test being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The Read and Write easily hit the 6,000MB/s+ area and hit 6,590MB/s Read and 6,250MB/s. However, the bottleneck of my system capped this in ATTO quite noticeably. Additionally, the IOPS benchmarks in ATTO for the Sabrent Rocket 4 Plus were good, but as expected, not breathtaking. Next, I repeated these tests with a 4GB test file.

The larger test file, unsurprisingly, produced higher results of sequential Read/Write at 6,600MB/s and 6,300MB/s respectively. The IOPS still maintained the same level as before.

Next, I switched to AS SSD for benchmarks. First up was 1GB file testing, both on sequential and 4K random:

The results were a pinch lower than I would have liked to see, so I then moved onto the 10G test file. These were noticeably better, both in transfers and 4K random:

The AS SSD tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. 1GB file test files provided:

Although this never crossed into the 7,000MBs mark (I suspect down to my test hardware), when I tested the 4GB test file routine, we saw increased benchmark scores 6,979MB/s Read and 6,741MB/s Write, as well as increased IOPS reported.

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory n board. Nevertheless, in the short term we still could ascertain the reported performance of 5,947/5,405MB/s on 16GB file testing:

Overall, the Sabrent Rocket 4 Plus was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims.

Sabrent Rocket 4 Plus SSD Review – Conclusion

There is no denying that the Sabrent Rocket 4 Plus is an impressive SSD! Despite the wide range of solutions open to most SSD buyers, Sabrent has managed to do an incredible job of not only standing out from their contemporaries but also massively exceed them! Though it still lives marginally in the shadow of more expensive SSDs, like the Seagate Firecuda 3530, it still manages to massively outpace a number of big releases from Samsung and WD in 2021. With a consistent Performance of 6.9GB/s performance in our test area, it is no slouch and although the IOPS ratings are less than man recent releases, it makes up for it with a better price point in the lower tiers. Indeed, it is quite hard for most home and prosumer users to fault the Sabrent Rocket 4 Plus. The warranty procedure could certainly do with a change in-house and the oddly imbalanced price vs TB price point will hopefully level out when shortages level out, but overall I am quite pleased with what the Sabrent NVMe SSD bring to the table and recommend to home users, gamers and professionals who want a single drive that does exactly what it says on the tin

PROs of the Sabrent Rocket 4 Plus CONs of the Sabrent Rocket 4 Plus
Genuinely Impressive Performance

PS5 Compatible

One of the Affordable 7,000MB/s Drive on the Market

Decent Amount of DDR4 Memory Cache

96 Layer 3D TLC NAND Hugely Beneficial

One of the Earliest Phison E18 SSDs

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) has dipped noticeably since it’s predecessor

Still Outperformed by the Firecuda 530

Warranty (1yr unless registered) seems needlessly complex

 

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ 1TB – $200 2TB – $469.99 4TB – $999.99
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L B27 3D NAND 96L
Capacity 1TB Single Sided 4TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

❌