FreshRSS

🔒
❌ À propos de FreshRSS
Il y a de nouveaux articles disponibles, cliquez pour rafraîchir la page.
Hier — 6 décembre 2021Flux principal

ADATA XPG GAMMIX S70 Blade SSD Review – New Phison Killer?

6 décembre 2021 à 01:35

Review of the XPG GAMMIX S70 Blade PCIe Gen 4 NVMe SSD

Of all of the brands that are spread across the SSD industry, very few have the same level of market coverage of ADATA. With a strong memory division that has resulted in their hardware being featured in countless hardware clients in home and business, environments, as well as a long-established presence in the PC gaming community in their XPG series, there is a pretty good chance that ADATA components or accessories are somewhere near you right now. When they entered the NVMe SSD market, they did with a remarkably strong footing, with releases being separated into consumer and business needs – with virtually no compromise on wither. The XPG Gammix S70 Blade is a physically slim lined version of their popular chunky heatsink version, the Gammix S70 (non-blade), arriving with a similarly unique architecture using that Innogrit PCIe 4 controller, thin thermal plate deployment and arriving at a price point that makes a number of the Phison E18 alternatives in the market look a bit overpriced indeed. Now that the PS5 has enabled console storage and the non-Blase Gammix S70 proves too large for the task, the Adata XPG Gammix S70 Blade serves as a great choice. Add to this that many users have low expectations for how much heat will be generated in a 90/10% Read over Write systems like PS5 and even concerns over the thin Thermal plate heatsink deployment may be unwarranted. So, today I want to review the Adata XPG Gammix S70 blade and help you decide if it deserves your data.

XPG GAMMIX S70 Blade SSD Review – Quick Conclusion

Given the stronghold that Phison has over the bulk of SSDs in the current generation of NVMe, it takes a lot for a drive that chooses a different way of doing things to make its mark. The XPG Gammix S70 blade achieves this in practically every way, proving itself as an excellent example of the Innogrit Rainer controller. With performance that matches or surpasses that of its biggest rivals, yet arriving at a more affordable price point, the Gammix S70 Blade is another great gamer release from Adata in their XPG series. The slimline heatshield, although clearly designed for a particularly compact deployment, is arguably less effective than a regular heatsink (or the non-blade fat heatsink) and does possibly limit the Blade’s use in high write situations, but for traditional PC gamers and especially for PS5 SSD upgrades, the Adata XPG Gammix S70 Blade is a solid SSD that most gamers will not regret.

SPEED - 9/10
HARDWARE - 9/10
PERFORMANCE - 8/10
PRICE - 9/10
VALUE - 9/10


8.8
PROS
👍🏻Great to see non-Phison E18 SSDs in the market
👍🏻176L 3D TLC NAND is a big plus over the current 96L non-Blade Version
👍🏻
👍🏻Excellent Value (Especially With the Reported Performance)
👍🏻
👍🏻PS5 Compatibility Confirmed
👍🏻
👍🏻Unparalleled Compact Deployment
👍🏻
👍🏻Low Heat Temp Recordings in Read Activity
👍🏻
👍🏻August ’21 Update Increased Performance Further
CONS
👎🏻The heatshield is very limited in its deployment vs traditional ‘fat’ heatsinks
👎🏻PS5 Has an oddly resistant Benchmark vs Phison E18 SSDs (still unknown why – largely academic in its impact though)

XPG GAMMIX S70 Blade SSD Review – Packaging

The retail box that the Gammix S70 Blade arrives in is shiny. No, that is not enough. It’s REALLY shiny, covered in holographic sheen and is oozing with gamer focus branding! The box makes a bold impact and although the majority of PCIe 4.0 SSDs in 2021/2022 are quite loud and brash in their presentation, this is a big step up still., especially given that ADATA is generally quite a ‘background’ company in most other components.

The top left of the retail box highlights a number of the drive’s key features that, although fairly standard in PCIe4 M.2 NVMes of late in most cases, still has a few stand out specs. 

Opening up this retail gives us JUST the XPG GAMMIX S70 Blade SSD. No instructions, warranty information (displayed on the rear of the box) or screws, the XPG S70 SSD and unattached slimline graphene heatshield.

If you look at the metal cover next to the SSD, you can see that the heatshield is remarkably compact. Unlike the non-blade version of the XPG S70 with its oversized heatsink, the single-use plate (with readily applied adhesive) is of course designed for much more compact deployment, such as the new PS5 SSD expansion slot activated in Summer ’21. Generally, when it comes to PCIe 4 SSDs, I would always recommend a larger and more effective heatsink for dissipating the large amount of heat the controller will be generating. However, in deployments that are going to be larger read based (which less complicated systems like PS5 will be doing) this thermal plate will likely be fine. Comparative heat testing on the PS5 vs the likes of the non-blade heatsink and the Sabrent PS5 heatsink will be coming soon on NASCompares YouTube, but even the first two test sessions with the S70 Blade on the PS5 (linked below) went perfectly well.

The heatshield is applied simply by removing the pealed panel, utilizing an adhesive topped thermal pad. It is attached INCREDIBLY firmly and is effectively single-use, in that if removed (with force) will tear the thermal pad away.

Even a casual glance at the XPG Blade and heatshield next to the non-blade fat heatsink gives you some idea of just how thin that metal panel is. The non-blade heatsink even manages to raise the height of the SSD M.2 connector notably too.

Applying the XPG S70 Blade heatshield to the SSD, although making the drive arguably cooler looking, definitely shows how little surface area and density of heat dissipation are going to be possible. I would be concerned about the Blade in deployment in an area that has limited/zero airflow, as that heatshield is only going to be able to offload a small amount of heat from the SSD controller compared with the bigger version. Again, less of a concern in heavy read activity though.

So, what about in PS5 deployment? For those of you who have been considering the ADATA XPG GAMMIX S70 Blade for installation in the PS5 SSD expansion slot to increase storage, I am pleased to confirm that this SSD is 100% supported by the system (currently in software beta, but the Gammix S70 Blade will definitely be on the compatibility list of the full software update release. However, the physical installation needs highlighting.

Comparing it against the non-Blade, you can see why many have been looking at the XPG Gammix S70 Blade for PS5 deployment.

BLADE Version

Non-BLADE Version

The XPG GAMMIX S70 Blade takes up considerably less space in the PS5 storage expansion slot, leaving more room to allow air to flow over the heatsink. The non-Blade included heatsink, being considerably larger, not only fills the m.2 slot considerably more, but it also presents a new problem. Namely that the Gammix S70 NON-BLADE is too large and prevents a user from installing the M.2 bay cover. On the one hand, the fat heatsink is in the direct line of airflow through the PS5 system, which means it will get getting air passing on/through the fat-heatsink. However, this also means that it is partially obstructing the airflow inside the PS5 towards other components. The PS5 utilizes negative airflow (pulling air through one set of vents and push it through the net) and it is unknown whether an M.2 in this slot uncovered AND protruding out into the air path would negatively affect the system as a whole. Hence why many users would opt for the Blade version as a matter of overall precaution.

BLADE Version

Non-BLADE Version

Installing the ADATA Gammix S70 Blade in the PS5 M.2 SSD bay at startup allows you to run a benchmark on the drive. Oddly, despite the high performance of this SSD, the PS5 rated the drive at over the recommended minimum of 5,500MB/s in its initial benchmark. Below is how the Adata XPG Gammix S70 Blade and non-Blade version compared when the PS5 Benchmarked them both:

PS5 Benchmark – 6,009MB/s

BLADE Version

PS5 Benchmark – 6,235MB/s

Non-BLADE Version

The fact that ADATA includes the heatsink with your purchase of the XPG GAMMIX S70 Blade will always be attractive to buyers who want hassle from installation, as well as doing so at no additional cost and STILL arriving at a lower price point than many competitors is inarguably appealing. So that is the physical design of the XPG GAMMIX S70 Blade SSD. But what about the hardware components themselves? Does the XPG GAMMIX S70 Blade cut the mustard in terms of current generation hardware and protocols? Let’s find out.

ADATA XPG GAMMIX S70 Blade SSD Review – PS5 Benchmark

To put the ADATA XPG GAMMIX S70 Blade SSD PS5 Performance Benchmark into a little perspective, here is how it compares against the Addlink A95, Adata XPG Gammix S70, Sabrent Rocket 4 Plus and Gigabyte Aorus 7000s – four SSDs that are all PS5 supported and VERY similar architecture very little difference between the others in this tier, it is a solid benchmark.

Addlink A95 PS5 Benchmark – 6556MB/s XPG GAMMIX S70 PS5 Benchmark – 6235MB/s
Sabrent Rocket 4 Plus – 6557MB/s Gigabyte Aorus 7000s PS5 Benchmark6557MB/s

Full PS5 Testing of the Adata XPG Gammix S70 is all available as a playlist over on the NASCompares YouTube channel. But for now, let’s carry on with looking at the hardware of the A90S70 Blade, how it conventionally benchmarks and how it compares with currently favourite PS5 SSDs like the WD Black and Seagate Firecuda 530,

XPG GAMMIX S70 Blade SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of over 7,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the XPG GAMMIX S70 Blade are quite modern. Indeed, for all the big talk of the Seagate Firecuda 530 hardware (still currently the ‘score to beat’ PCIE Gen4 m.2 NVMe right now) being top tier, the XPG GAMMIX S70 Blade is pretty darn similar on the spec sheet! Below is how it looks:

ADATA GAMMIX S70 Blade

500GB –  $99, 1TB – $199, 2TB – $389

PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.4
NAND 3D TLC Micron 176L
Capacity 500GB – 1TB – 2TB
Controller Innogrit IG5236
Warranty 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the XPG GAMMIX S70 Blade SSD Series

The first big, BIG thing to remember here is the controller, that Innogrit RainIer IG5236. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and although Inoogrit has produced several high profile SSD controllers in the last few years, this is their first PCIe 4.0 controller. This is a particularly big deal when most reports and measurements seemingly indicate that the Innogrit IG2536 is higher in performance than the Phison E18 controller used by most other recent PCIe 4 M.2 NVMe SSD, as well as because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Indeed, the XPG Gammix S70 Blade is one of very, VERY few SSDs that are using this controller in the home/prosumer gamer sector.

Earlier in 2021, CDRLabs ran performance testing with CrystalDisk on the Gammix S70 Blade SSD, comparing against a Phison E18 SSD of similar architecture (176L 3D TLC NAND, DDR4 RAM, NVMe 1.4, etc) and largely surpassed it by hundreds of Megabytes in Sequential Read and Write performance. So these results tend to back up the increased performance benchmarks that ADATA provide on the XPG S70 Blade. This is further improved with a recent software/firmware update for this drive released in August 2021 that further improved the write performance.

The NAND on the XPG GAMMIX S70 Blade is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and the XPG GAMMIX S70 Blade arrives with the current highest layer NAND in the industry at this tier right now (originally premiered in the Seagate Firecuda 530), it is bigger than most, arriving at 176 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 128L or 96L layers or so, so this is a big jump up for the XPG GAMMIX S70 Blade SSD. Although detailed information on the NAND used is not readily available online, we observed that the XPG GAMMIX S70 Blade featured FOUR blocks of ADATA NAND modules (256GB each), which really pushes the performance up!

Much like the Controller on the XPG GAMMIX S70 Blade being the ‘CPU’, it also has an area of memory. The XPG GAMMIX S70 Blade SSD uses DDR4 memory on board and this in conjunction with the SSD controller provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier, 1GB DDR4 on the 1TB, etc.

As mentioned, all available capacities of the XPG GAMMIX S70 Blade arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact that the 2TB can arrive on single-sided SSD boards is very impressive. Physical storage NAND is distributed evenly in order to space out the storage and allow even cooling, NAND wear and performance.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the XPG GAMMIX S70 Blade takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the XPG GAMMIX S70 Blade use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the XPG GAMMIX S70 Blade, as it is still (2-3 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the XPG GAMMIX S70 Blade, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

XPG GAMMIX S70 Blade SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The XPG GAMMIX S70 Blade SSD arrives in multiple capacities (below). The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the current price of both models around 10-20%!. Below is a breakdown of how each competitor drive and the XPG GAMMIX S70 Blade SSD compare:

Brand/Series ADATA GAMMIX S70 Blade

500GB – $99 1TB – $199 , 2TB – $389

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND 3D TLC ADATA 176L 3D TLC Micron B47R 176L BiCS4 96L TLC
Max Capacity 2TB – Double Sided 4TB – Double Sided 2TB
Controller Innogrit IG5236 Phison E18-PS5018 WD_BLACK G2
Warranty 5yr 5yr 5yr
500GB Model AGAMMIXS70B-512G-CS ZP500GM3A013 WDS500G1X0E-00AFY0
Price in $ and $ $99 / £80 $139 / £119 $119 / £99
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Price in $ and $ $199 / £175 $239 / £199 $249 / £169
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Price in $ and $ $389 / £340 $419 / £379 $399 / £339
4TB Model N/A ZP4000GM3A013 N/A
Price in $ and $ N/A $949 / £789 N/A
500GB Model AGAMMIXS70B-512G-CS ZP500GM3A013 WDS500G1X0E-00AFY0
Total Terabytes Written (TBW) 370TB 640TB 300TB
Mean Time Between Failures (MTBF, hours) 2,000,000 1,800,000 1,750,000
DWPD 0.4DWPD 0.7DWPD 0.3DWPD
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Total Terabytes Written (TBW) 740TB 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 2,000,000 1,800,000 1,750,000
DWPD 0.4DWPD 0.7DWPD 0.3DWPD
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Total Terabytes Written (TBW) 1480TB 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 2,000,000 1,800,000 1,750,000
DWPD 0.4DWPD 0.7DWPD 0.3DWPD
4TB Model N/A ZP4000GM3A013 N/A
Total Terabytes Written (TBW) N/A 5100TB N/A
Mean Time Between Failures (MTBF, hours) N/A 1,800,000 N/A
DWPD N/A 0.7DWPD N/A

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that controller and 176 Layer 3D TLC NAND used, rather than the 96L or 128L used by those used by competitors. This is an important point because the brand has significantly less ‘end user’ recognition in-home/business SSD media than the likes of Samsung, WD and Seagate and people will want to know they are going to get a product from a brand that they have heard of.

However, despite the use of the Innogrit Rainier IG5236 controller and 176 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower (for the most part) than those reported by their competitors. Indeed, the XPG GAMMIX S70 Blade is one of the few SSD/Memory focused brands with a PCIe 4.0 SSD that does not cross into the reported 1 Million IOPS mark, maxing out at 740k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Sabrent Rocket 4 Plus, the MSI Spatium M480, the Gigabyte Aorus 7000s and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the XPG GAMMIX S70 Blade is the Seagate Firecuda 530. However, the XPG GAMMIX S70 Blade SSD has been available in the market for longer and has certainly embedded itself in the minds and budget’s of PC/PS5 gamers who think the Firecuda 530 is too expensive and the others are less impress – it makes a very appealing middle ground. Below is how these drives compare in terms of throughput and IOPS:

Brand/Series ADATA GAMMIX S70 Blade

500GB – $99 1TB – $199 , 2TB – $389

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

500GB Model AGAMMIXS70B-512G-CS ZP500GM3A013 WDS500G1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7400MB 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB 2600MB 3000MB 4100MB
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7400MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6000MB 5300MB
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7400MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6700MB 6900MB 5100MB
4TB Model N/A ZP4000GM3A013  
Sequential Read (Max, MB/s), 128 KB N/A 7300MB N/A
Sequential Write (Max, MB/s), 128 KB N/A 6900MB N/A
Brand/Series GAMMIX S70 BLADE Seagate Firecuda 530 WD Black SN850
500GB Model AGAMMIXS70B-512G-CS ZP500GM3A013 WDS500G1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 425,000 400,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 510,000 700,000 680,000
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 740000 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 740000 1000000 720,000
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 740,000 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 750,000 1,000,000 710,000
4TB Model N/A ZP4000GM3A013  
Random Read (Max, IOPS), 4 KB QD32 N/A 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 N/A 1,000,000 N/A

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Additionally, the WD Black arriving at a better price point, higher IOPS in most tiers and the fact it does this whilst still hitting that 7,000MB/s certainly gives pause for thought. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda or WD Black SN850 is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Remember that you can get 1TB of XPG GAMMIX S70 Blade for the same price as 500GB of the Firecuda 530 – which given the similarity of that performance means that you are getting incredible value! Additionally, it is worth noting that although IOPS on the XPG Gammix S70 Blade were lower than those reported on the WD Black SN850 and Seagate Firecuda 530 were higher, the Sequential Read and Write for the XPG Gammix S70 Blade were higher on both versus the WD Black and even a pinch higher on Read vs the Firecuda 530 – which is a particularly impressive vote of confidence in the Innogrit controller and the XPG GAMMIX S70 SSD. Let’s get the XPG GAMMIX S70 Blade on the test machine!

Testing the XPG GAMMIX S70 Blade m.2 PCIE4 NVMe SSD

The XPG GAMMIX S70 Blade was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the XPG GAMMIX S70 Blade over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out a little higher in idle than most previously tested SSD, HOWEVER, the ADATA Gammix S70 Blade heatsink kept the drive at a consistent temp of late 40’s for most of the tests and did an incredible job of maintaining a working temp without spiralling too high between each one being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The 2nd Test was a 1GB test file and finally, the last test was with a 4GB test file. The system was given 1-minute cool downtime between tests, no screen recording software was used (remove overhead) and a heatsink was used throughout (no reboots)

ATTO Disk Benchmark Test #1

256MB File PEAK Read Throughput  = 6.50GB/s

256MB File PEAK Write Throughput =5.85GB/s

 


 

ATTO Disk Benchmark Test #2

1GB File PEAK Read Throughput  = 6.56GB/s

1GB File PEAK Write Throughput = 5.84GB/s

 


 

ATTO Disk Benchmark Test #3

4GB File PEAK Read Throughput  = 6.50GB/s

4GB File PEAK Write Throughput = 5.89GB/s

 


 

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. Test were conducted on a 1GB, 4GB and 16GB Test File. I also included a mixed 70/30 read and write task to give a little bit more of a realistic balanced workload. These tests were conducted with 1-minute cooling break in between

CRYSTALDISK MARK 1GB TEST


CRYSTALDISK MARK 4GB TEST


CRYSTALDISK MARK 16GB TEST

 

Next, I switched to AS SSD benchmark. A much more thorough test through, I used 1GB, 3GB and 5GB test files. Each test includes throughput benchmarks and IOPS that are respective to the larger file sizes (important, if you are reading this and trying to compare against the reported 4K IOPS from the manufacturer).

AS SSD Benchmark Test #1

 


AS SSD Benchmark Test #2

 


AS SSD Benchmark Test #3

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

1GB AJA File Test Results (Peak) = 5797MB/s Read & 5063MB/s Write

4GB AJA File Test Results (Peak) = 5874MB/s Read & 5218MB/s Write

16GB AJA File Test Results (Peak) = 5920MB/s Read & 5234MB/s Write

Throughout the testing, the XPS GAMMMIX S70 Blade SSD started at a slightly higher than average temp, but maintained a good operational temperature throughout the whole testing:

Overall, the XPG GAMMIX S70 Blade was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims. IOPs were a little lower than I expected, but again, we were testing very large file types, so this would have to be taken in context.

XPG GAMMIX S70 Blade SSD Review – Conclusion

Given the stronghold that Phison has over the bulk of SSDs in the current generation of NVMe, it takes a lot for a drive that chooses a different way of doing things to make its mark. The XPG Gammix S70 blade achieves this in practically every way, proving itself as an excellent example of the Innogrit Rainer controller. With performance that matches or surpasses that of its biggest rivals, yet arriving at a more affordable price point, the Gammix S70 Blade is another great gamer release from Adata in their XPG series. The slimline heatshield, although clearly designed for a particularly compact deployment, is arguably less effective than a regular heatsink (or the non-blade fat heatsink) and does possibly limit the Blade’s use in high write situations, but for traditional PC gamers and especially for PS5 SSD upgrades, the Adata XPG Gammix S70 Blade is a solid SSD that most gamers will not regret.

PROs of the XPG GAMMIX S70 Blade CONs of the XPG GAMMIX S70 Blade
Great to see non-Phison E18 SSDs in the market

176L 3D TLC NAND is a big plus over the current 96L non-Blade Version

Excellent Value (Especially With the Reported Performance)

PS5 Compatibility Confirmed

Unparalleled Compact Deployment

Low Heat Temp Recordings in Read Activity

August ’21 Update Increased Performance Further

The heatshield is very limited in its deployment vs traditional ‘fat’ heatsinks

PS5 Has an oddly resistant Benchmark vs Phison E18 SSDs (still unknown why – largely academic in its impact though)

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Addlink A90 SSD Review – The Mid Range PS5 SSD

12 novembre 2021 à 01:41

Review of the Addlink A90 PCIe Gen 4 NVMe SSD

The Addlink A90 is an unusual SSD, to say the least, with its promise of PCIe performance at a price tag approaching that of PCIe3. In the short period of time that Sony has enabled the PS5 m.2 NVMe SSD Expansion bay, around 30-35 mainline SSDs have fallen into the realm of compatibility with this storage upgrade. Sony has not exactly been forthcoming about which SSDs are supported and which are not, with many communities online working together to put together tested and proven PS5 compatibility lists. For parents looking to buy an SSD for their children’s new next-gen console, to long time gamers who are having to quickly learn the eccentricities of M.2 SSD storage – the days of memory cards and official upgrades are a thing of the past. Therefore, when Addlink launched their A-Series of SSDs, all with confirmed PS5 compatibility and logos, in efforts to provide a range of drives that allow PS5 buyers a choice between Performance – Price – Capacity – or all three. We already reviewed the Addlink A95 Prosumer SSD and now it is time to review the Addlink A90 SSD – Arriving at a lower price point, but also a lower performance threshold of around 1500-2000MB/s less. Although its traditional PC benchmarks rate it as below the recommended 5,500MB/s sequential read of PS5, the PS5’s own benchmark tell a different story (covered later in the testing) and confirm the compatibility of the Addlink A90 with PS5. So, should you consider the mid-range Addlink A90 NVMe SSD for your PS5 upgrade? Maybe as your PC gamer storage solution? Let’s find out.

Interested in the Addlink A95 SSD? Here is the Addlink A95 Prosumer PS5 SSD Review herehttps://nascompares.com/2021/10/15/addlink-a95-ps5-ssd-review-bringing-its-a-game

Addlink A90 SSD Review – Quick Conclusion

Although a step down from the arguably more impressive A95, it also is a lower price point whilst still maintaining a number of the more expensive drives highest qualities, which means you still feel like you are getting a good ‘2nd place’ drive, without fear of too much compromise. Few SSDs that I have featured here on NASCompares have left me with the consistently please tone that the Addlink A Game range has. Whether you are looking at this as an SSD upgrade for your PS5 or your Gaming PC, there is very little to be unhappy about here as a gamer. The Build quality of both the SSD itself, as well as the heatsink and choices made at the hardware architecture level are all high-end choices that do not leave you with a feeling unsatisfied. When choosing to upgrade your SSD, it can be easy to always opt for the much bigger know brands like WD or Seagate, thinking that there is a clear reason for their higher price. As true as that can be sometimes, in the case of the Addlink A90 you have an SSD that takes advantage of the same hardware choices that those bigger brands offer in the likes of the Firecuda 520 from Seagate or the Sabrent Rocket PCIe 4.0, includes a high-quality heatsink, arrives preattached in a very sturdy build and at no point in the testing did we feel that a power or memory bottleneck appears. It might lack some of the enterprise bells and whistles of more enterprise-level SSDs, but the A90 is not targeting flash, fabric or caching – it is designed for gamers and at this, it is an unquestionable success. Keep an eye on this one!

SPEED - 8/10
HARDWARE - 8/10
DURABILITY - 9/10
PRICE - 8/10
VALUE - 8/10


8.2
PROS
👍🏻Genuinely Impressive Performance on a Phison E16 SSD
👍🏻Very nice heatsink and thermal application internally
👍🏻
👍🏻Low-Temperature Reading even in high use
👍🏻
👍🏻One of the highest Read/Write Performers available
👍🏻
👍🏻Use of Micron 176L TLC NAND is promised in 2022 (TBC)
👍🏻
👍🏻Fully PS5 Compatible with In-System Benchmark exceeding minimum
👍🏻
👍🏻Higher Durability than WD Black SN850, Samsung 980 Pro & Sabrent Rocke
CONS
👎🏻More Expensive than WD Black SN850 & Samsung 980 Pro
👎🏻Not Quite as Durable as Seagate Firecuda 520
👎🏻
👎🏻Little overshadowed by the Addlink A95

Addlink A90 SSD Review – Packaging

Shiny. Very, VERY Shiny! That is how I would begin in describing the packaging here. Arriving in somewhat holographic packaging, the retail box of the Addlink S95 pulls no punches here when it comes to aiming at the gamers, with most of the focus going to performance stats and highlighting their A Game gamer series (the A90, A90 and A92).

The rear of the box makes a point of not only highlighting that this SSD is PS5 compatible, but also it’s one of the first SSDs I have had in for review that actually features the official PS5 logo. Along with that, there is a little nod to the heatsink and rather unique (at least as far as other M.2 SSDs on the market) application of the heatsink, using a much more malleable substance (we will go into more detail later) they are keen to highlight that this does an improved job of maintaining the SSD temperature. This will be covered at the last 3rd of this review in the testing and benchmarking.

The contents of the box are a little small, but not in a bad way. A first-time setup guide and warranty information is included in a booklet (as well as the usual web/3D-Barcode links), as well as the SSD itself (with heating pre-applied).

The Heatsink on the Addlink A90 is an interesting mix of elements that include aesthetical design, air efficiency and professional application. Addlink have an impressive range of m.2 NVMe solutions in their catalogue, many using modified versions of this heatsink (depending on the product series), so the need to add the Add AGame logo and PCIe4.0 architecture makes sense.

Looking at the A90 heatsink directly, it is a sweet looking design. Comprised of 3 main elements, a pre-cute metal plate with air channel grooves, a secondary metal clip that surrounds it and finally the thermal silica gel pad that connected the Heatsink to the SSD.

Looking at the Addlink A90 at an angle shows that, despite the aggressive nature of the heatsink, it is actually not very tall. In fact, the Low-Profile designed heatsink is only has a 9.1 mm height, with the total Heatsink+silica+SSD coming to just under 11.25mm. With space being at a premium in the PS5 M.2 SSD slot (and users wanting a little space around/above their SSD+HS to promote any airflow, this is particularly impressive.

Likewise, the heatsink is fractionally raised from the SSD a degree higher than most SSD+HS combos on the Adddlink A90, as the silica gel between them is particularly thick and envelopes the chips underneath a tad (on purpose). This means that is a surrounding around that can capture passing airflow around the SSD, that is not obstructed by a surrounding casing.

Removing the Addlink A90 Heatsink was NOT easy. I cannot stress enough how well attached this heatsink was! I nearly snapped the SSD in two trying to remove it. The SSD uses an adhesive coated silica gel that covered the entirety of the M.2 NVMe SSD, but also slightly envelopes each chip on the drive. It doesn’t smother them (so no touching the PCB) but it does surround the edges of each component to cover a greater physical density, whilst still remaining tidy.

A closer look a the heatsink base shows you just how well it surrounds each chip (with clear indications of where each was placed from imprints). Additionally, you can see that the consistency of the silica gel pad is not the same as the reusable pads in other heatsinks, with this substance having more in common with thermal paste found on CPUs. The slightly porous nature of it definitely seemed to ensure that the components were adequately covered and it does leave you with a distinct feeling of quality and professional application.

Taking the time to clean a little of the silica gel away, you can see that the A90’s controller is much lower on the board than many other SSDs (where it will more often be located directly beneath the m.2 key connector.

As mentioned, the Addlink A90 NVMe SSD fits very neatly into the PS5 SSD upgrade slot, with a clear few millimetres between the heatsink and the m.2 slot cover. Although it is worth highlighting that this heatsink was originally designed for a gaming desktop PC installation (like 99% of other M.2 SD heatsinks), so I will hold full judgement on how efficient the A90 heatsink is for PS5 heat dissipation for another article/video soon.

So that is the physical design of the Addlink A90 SSD. But what about the hardware components themselves? Does the Addlink A90 cut the mustard in terms of current generation hardware and protocols? Let’s find out.

Addlink A90 SSD Review – PS5 Benchmark

Upon installing the Addlink A90 SSD into the PS5, the system gave an impressive benchmark of 5636MB/s. It should be noted that the PS5 has a very unique benchmarking system internally for its own software needs and although Sony recommends that you only use SSDs with a reported 5,500MB/s+ performance (sequential Read) minimum, we have seen SSDs with a lower reported PC benchmark of this be rated at 5,500MB/s+ om the PS5 benchmark. So, there is definitely wiggle room there.

To put the Addlink A90 SSD PS5 Performance Benchmark into a little perspective, here is how it compares against the Seagate Firecuda 520, Silicon Power US70 and Sabrent Rocket PCIe 4.0 – three SSDs that are all PS5 supported and VERY similar architecture:

Addlink A90 PS5 Benchmark – 5636MB/s Seagate Firecuda 520 PS5 Benchmark – 5621MB/s
Sabrent Rocket PCIe 4.0 PS5 Benchmark – 5622MB/s Silicon Power US70 PS5 Benchmark – 56227MB/s

With very little difference between the top three others in this tier, it is a solid benchmark. Additionally, the Addlink A90 takes care of overprovisioning at the NAND/Controller level (with four 96L 3D TLC NAND modules of 512GB), so that means that this 2TB SSD is genuinely available as 2TB on the Playstation 5 Storage manager (not 1,920GB as seen previously):

Full PS5 Testing of the Addlink A90 (along with the A95 and A92) is all available as a playlist over on the NASCompares YouTube channel. But for now, let’s carry on with looking at the hardware of the A90, how it conventionally benchmarks and how it compares with currently favourite PS5 SSDs like the Sabrent Rocket PCIe 4.0 and Seagate Firecuda 520,

Addlink A90 SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of over 5,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the Addlink A90 are quite modern. Indeed, for all the big talk of the Seagate Firecuda 520 hardware (or Firecuda 530 – still currently the ‘score to beat’ PCIe Gen4 m.2 NVMe right now) being top tier, the Addlink A90 is much more comparable to the Seagate Firecuda 520 and is pretty darn similar on the spec sheet! Below is how it looks:

Addlink A90

1TB – $179/£155 – 2TB – $344/£300

PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.3
NAND 3D TLC KIOXIA 96L
Max Capacity 2TB – Double Sided
Controller Phison E16-PS5016
Warranty 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Addlink A90 SSD Series

The first big, BIG thing to remember here is the controller, that Phison E16. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the newer E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. Before that though was the Phison E16, the brands first PCIe 4.0 controller for NVMe SSD and it was widely featured by SSD brands at launch. This controller is one of the biggest reasons that the Addlink A90 can actually back up its promises about the 5,00MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Addlink A90 is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance. Indeed, the Addlink A90 matches the current Phison 16 favourite PCIe4 SSD (the Seagate Firecuda 530) with 96 layer 3D TLC NAND onboard. This is a noticeably large jump over many others that are using 64L 3D TLC NAND before it and is a big part of the drive’s performance gains. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (with the Addlink A92 arriving with QLC NAND), most are still at 96L now layers, so this still puts the Addlink A90 on a level footing with most of the SSDs out there.

Much like the Controller on the Addlink A90 being the ‘CPU’, it also has an area of memory. The Addlink A90 SSD uses DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier, 1GB DDR4 on the 1TB, etc.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Addlink A90 takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Addlink A90 use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Addlink A90, as it is still (at release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released of the same architecture (especially at Sequential Write – to be discussed). Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Addlink A90, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Addlink A90 SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Addlink A90 SSD arrives in multiple capacities (below). The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the majority of PS5 supported SSDs price point in most regions. Below is a breakdown of how each Addlink A90 SSD compares against the same capacity i nthe Sabrent Rocket PCIe 4.0 and Seagate Firecuda 520 SSD:

Brand/Series Addlink A90

1TB – $179/£155 – 2TB – $344/£300

Sabrent Rocket PCIe4

500GB – $89 / £79 1TB – $159 / £140– 2TB – $299 / £359

Seagate FireCuda 520

500GB – $104 / £89 1TB – $179 / £135 – 2TB – $369 / £309

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.3 NVMe 1.3 NVMe 1.3
NAND 3D TLC KIOXIA 96L 3D TLC KIOXIA 96L 3D TLC KIOXIA 96L
Max Capacity 2TB – Double Sided 2TB – Double Sided 2TB – Double Sided
Controller Phison E16-PS5016 Phison E16-PS5016 Phison E16-PS5016
Warranty 5yr 1yr/5yr 5yr+3yr Rescue
500GB Model N/A SB-ROCKET-NVMe4-500 ZP500GM3A002
Price in $ and $ N/A $89 / £79 $89 / £79
1TB Model AD1TBA90M2P SB-ROCKET-NVMe4-1TB ZP1000GM3A002
Price in $ and $ $179 / £155 $159 / £140 $159 / £140
2TB Model AD2TBA90M2P SB-ROCKET-NVMe4-2TB ZP2000GM3A002
Price in $ and $ $344 / 300 $399 / £359 $399 / £359
4TB Model N/A N/A N/A
Price in $ and $ N/A N/A N/A
500GB Model N/A SB-ROCKET-NVMe4-500 ZP500GM3A002
Total Terabytes Written (TBW) N/A 850TB 850TB
Mean Time Between Failures (MTBF, hours) N/A 1,700,000 1,800,000
DWPD N/A 0.9DWPD 0.9DWPD
1TB Model AD1TBA90M2P SB-ROCKET-NVMe4-1TB ZP1000GM3A002
Total Terabytes Written (TBW) 1800TB 1800TB 1800TB
Mean Time Between Failures (MTBF, hours) 1,700,000 1,700,000 1,800,000
DWPD 0.9DWPD 0.9DWPD 0.9DWPD
2TB Model AD2TBA90M2P SB-ROCKET-NVMe4-2TB ZP2000GM3A002
Total Terabytes Written (TBW) 3600TB 3600TB 3600TB
Mean Time Between Failures (MTBF, hours) 1,700,000 1,700,000 1,800,000
DWPD 0.9DWPD 0.9DWPD 0.9DWPD
4TB Model N/A N/A N/A
Total Terabytes Written (TBW) N/A N/A N/A
Mean Time Between Failures (MTBF, hours) N/A N/A N/A
DWPD N/A N/A N/A

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is NOTICEABLY higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used by it lower performance than those other drives over time. That said, the PS5 is a highly READ focused system and DWPD and TBW are less of a concerning factor in that architecture. This is an important point because the brand has significantly less pedigree in-home/business SSD media than the likes of Samsung, WD and Seagate and people will want to know they are going to get a product that lasts!

As you might expect from the use of the Phison E16 controller and 96 layer NAND, the reported IOPS on each capacity is actually pretty similar to the 96L Sabrent Rocket PCIe 4.0 and near enough identical to the Seagate Firecuda 520. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E16 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. Of those, the only one that seemingly ‘out specs’ the Addlink A90 is the Seagate Firecuda 520 marginally. However, the Addlink A90 SSD has been available in the market for just a week or so and has certainly embedded itself in the market with PS5 users. Additionally, Addlink state that they are hoping to upgrade the NAND on the A90 series to 176L in the near future – but I did not factor that into this review at the time of writing. Below is how these three drives compare:

Brand/Series Addlink A90

1TB – $179/£155 – 2TB – $344/£300

Sabrent Rocket PCIe4

500GB – $89 / £79 1TB – $159 / £140– 2TB – $299 / £359

Seagate FireCuda 520

500GB – $104 / £89 1TB – $179 / £135 – 2TB – $369 / £309

500GB Model N/A SB-ROCKET-NVMe4-500 ZP500GM3A002
Sequential Read (Max, MB/s), 128 KB N/A 5000MB 5000MB
Sequential Write (Max, MB/s), 128 KB N/A 2500MB 2500MB
1TB Model AD1TBA90M2P SB-ROCKET-NVMe4-1TB ZP1000GM3A002
Sequential Read (Max, MB/s), 128 KB 5000MB 5000MB 5000MB
Sequential Write (Max, MB/s), 128 KB 4400MB 4400MB 4400MB
2TB Model AD2TBA90M2P SB-ROCKET-NVMe4-2TB ZP2000GM3A002
Sequential Read (Max, MB/s), 128 KB 5000MB 5000MB 5000MB
Sequential Write (Max, MB/s), 128 KB 4400MB 4400MB 4400MB
4TB Model N/A N/A N/A
Sequential Read (Max, MB/s), 128 KB N/A N/A N/A
Sequential Write (Max, MB/s), 128 KB N/A N/A N/A
Brand/Series Addlink A90 Sabrent Rocket PCIe4 Seagate FireCuda 520
500GB Model N/A SB-ROCKET-NVMe4-500 ZP500GM3A002
Random Read (Max, IOPS), 4 KB QD32 N/A 400000 430,000
Random Write (Max, IOPS), 4 KB QD32 N/A 550000 630,000
1TB Model AD1TBA90M2P SB-ROCKET-NVMe4-1TB ZP1000GM3A002
Random Read (Max, IOPS), 4 KB QD32 750,000 750,000 760,000
Random Write (Max, IOPS), 4 KB QD32 700,000 750,000 700,000
2TB Model AD2TBA90M2P SB-ROCKET-NVMe4-2TB ZP2000GM3A002
Random Read (Max, IOPS), 4 KB QD32 750,000 750,000 750,000
Random Write (Max, IOPS), 4 KB QD32 700,000 850TB 700,000
4TB Model N/A N/A N/A
Random Read (Max, IOPS), 4 KB QD32 N/A N/A N/A
Random Write (Max, IOPS), 4 KB QD32 N/A N/A N/A

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 520 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this and they both feature 96L NAND, the Seagate entry has the inclusive data recovery services and a much more established reputation. Yes, that is why the Firecuda 520 commands the higher price tag. Additionally, the Sabrent Rocket originally arrived at a better price point at the lower tiers (constantly in sales as it has been in the market for almost a year longer) in most tiers and the fact it does this whilst still hitting that 5,000MB/s certainly gives pause for thought. However, for many, the additional cost for higher durability they may never need in the Firecuda 520, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that choosing the Firecuda or Sabrent Rocket PCIe 4.0 is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Lastly, it is worth remembering that the Addlink A90 arrives at a lower price point than the others, yet STILL features an included premium low-profile heatsink in the price, Let’s get the Addlink A90 on the test machine!

Testing the Addlink A90 m.2 PCIE4 NVMe SSD

The Addlink A90 was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the Addlink A90 over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 41C between each test being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The 2nd Test was a 1GB test file and finally, the last test was with a 4GB test file. The system was given 1-minute cool downtime between tests, no screen recording software was used (remove overhead) and a heatsink was used throughout (no reboots)

ATTO Disk Benchmark Test #1

256MB File PEAK Read Throughput  = 5.24GB/s

256MB File PEAK Write Throughput = 3.94GB/s

 


 

ATTO Disk Benchmark Test #2

1GB File PEAK Read Throughput  = 5.24GB/s

1GB File PEAK Write Throughput = 4.06GB/s

 


 

ATTO Disk Benchmark Test #3

4GB File PEAK Read Throughput  = 5.22GB/s

4GB File PEAK Write Throughput = 4.06GB/s

 


 

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. Test were conducted on a 1GB, 4GB and 16GB Test File. I also included a mixed 70/30 read and write task to give a little bit more of a realistic balanced workload. These tests were conducted with 1-minute cooling break in between

CRYSTALDISK MARK 1GB TEST


CRYSTALDISK MARK 4GB TEST


CRYSTALDISK MARK 16GB TEST

 

Next, I switched to AS SSD benchmark. A much more thorough test through, I used 1GB, 3GB and 5GB test files. Each test includes throughput benchmarks and IOPS that are respective to the larger file sizes (important, if you are reading this and trying to compare against the reported 4K IOPS from the manufacturer).

AS SSD Benchmark Test #1

 


AS SSD Benchmark Test #2

 


AS SSD Benchmark Test #3

 

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

1GB AJA File Test Results (Peak) = 4483MB/s Read & 4155MB/s Write

4GB AJA File Test Results (Peak) = 4475MB/s Read & 41324MB/s Write

16GB AJA File Test Results (Peak) = 4487MB/s Read & 4148MB/s Write

Overall, the Addlink A90 was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims. IOPs were a little lower than I expected, but again, we were testing very large file types, so this would have to be taken in context. Below is the full temperature reading throughout the entire tests, with the SSD and it’s unique heatsink maintaining a solid temperature of between 30-40 degrees throughout – very impressive.

Addlink A90 SSD Review – Conclusion

Although a step down from the arguably more impressive A95, it also is a lower price point whilst still maintaining a number of the more expensive drives highest qualities, which means you still feel like you are getting a good ‘2nd place’ drive, without fear of too much compromise. Few SSDs that I have featured here on NASCompares have left me with the consistently please tone that the Addlink A Game range has. Whether you are looking at this as an SSD upgrade for your PS5 or your Gaming PC, there is very little to be unhappy about here as a gamer. The Build quality of both the SSD itself, as well as the heatsink and choices made at the hardware architecture level are all high-end choices that do not leave you with a feeling unsatisfied. When choosing to upgrade your SSD, it can be easy to always opt for the much bigger know brands like WD or Seagate, thinking that there is a clear reason for their higher price. As true as that can be sometimes, in the case of the Addlink A90 you have an SSD that takes advantage of the same hardware choices that those bigger brands offer in the likes of the Firecuda 520 from Seagate or the Sabrent Rocket PCIe 4.0, includes a high-quality heatsink, arrives preattached in a very sturdy build and at no point in the testing did we feel that a power or memory bottleneck appears. It might lack some of the enterprise bells and whistles of more enterprise-level SSDs, but the A90 is not targeting flash, fabric or caching – it is designed for gamers and at this, it is an unquestionable success. Keep an eye on this one!

PROs of the Addlink A90 CONs of the Addlink A90
Genuinely Impressive Performance on a Phison E16 SSD

Very nice heatsink and thermal application internally

Low-Temperature Reading even in high use

One of the highest Read/Write Performers available

Use of Micron 176L TLC NAND is promised in 2022 (TBC)

Fully PS5 Compatible with In-System Benchmark exceeding minimum

Higher Durability than WD Black SN850, Samsung 980 Pro & Sabrent Rocket

More Expensive than WD Black SN850 & Samsung 980 Pro

Not Quite as Durable as Seagate Firecuda 520

Little overshadowed by the Addlink A95


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

À partir d’avant-hierFlux principal

Seagate Ironwolf 525 NAS NVMe SSD Revealed

20 septembre 2021 à 15:25

Seagate PCIe Gen 4 NVMe for NAS on its Way – The Ironwolf 525 SSD

Continuing their reputation for bringing new media releases to the market before everyone else, Seagate seemingly has a PCIe Gen 4.0 NVMe SSD in the pipeline for NAS/SAN server use in their Ironwolf series, known as the Seagate Ironwolf 525. Although little is publically know about this new SSD, the Ironwolf 525 has already begun to appear on numerous stock management and distribution sites in Europe, so this seems to indicate a likely release before the end of 2021. Seagate was one of the first brands in storage media to introduce a server dedicated class of SSDs for home and prosumer users (with a U.2/SAS series already in place for enterprise in their Nytro series of course) in both SATA and NVMe m.2, however even in this early leak of information, a few unique or interesting details have already emerged. So, let’s go through everything that we know so far and whether the Seagate Ironwolf 525 SSD will deserve your cache* later in 2021/2022

Seagate Firecuda 530 PCIe 4.0 NVMe SSD Review Here https://nascompares.com/2021/08/09/seagate-firecuda-530-ssd-review-the-score-to-beat

*I’ll get my coat…..

Click to view slideshow.

The Seagate Ironwolf 525 SSD – What Do We Know?

As mentioned, details on specifications of the Seagate Ironwolf 525 NVMe SSD are remarkably thin on the ground. Clearly, release and a formal reveal should not be too far ahead, as even a casual search online reveals that a number of European sites are listing the drive:

As it stands, there are no official datasheets for the Seagate Ironwolf 525 SSD available, but a lot of the specifications that ARE available (across all listing sites), as well as going by the Seagate model ID naming convention used in the Ironwolf 510 and Firecuda seemingly indicate the following:

  • Seagate Ironwolf 525 NVMe SSD
  • Available in 500GB, 1TB and 2TB Capacity
  • PCIe Gen 4.0 x4 Architecture
  • NVMe 1.3 (TBC)
  • 2280 M.2
  • 3D TLC NAND (96L or 176L TBC)
  • 0.98/1.0 DWPD (TBC)
  • 850/1800/3600 TBW (TBC)
  • 1.8M Hours MTBF (TBC)
  • 5 years Warranty
  • Rescue Data Recovery Services (2/3yrs TBC)

Of course, these should be taken with a huge grain of salt until a formal release is made, but even tentatively, compared against the Seagate Ironwolf 510 Gen 3 SSD, the Ironwolf 525 is much more comparable to the Firecuda 520 in architecture and almost certainly will feature the Pison E16 controller. A VERY important factor to keep in mind right now is that in Autumn 2021, there are very, VERY few PCIe Gen 4.0 equipped servers (and practically zero M.2 PCIe 4×4 equipped systems). PCIe Gen 4 upgrade cards are very gradually appearing, but this seemingly looks like it will be a much later winter 2021/2022 hardware change from the big names in NAS, SAN and custom servers. Therefore, as appealing as the Seagate Ironwolf 525 PCIe Gen 4×4 SSD sounds right now, it is worth remembering that very few server systems will be able to fully unlock its potential and if you are considering the Ironwolf 525 for a NAS/Server released before Summer 2021, then you would likely be better off opting for the current Seagate Ironwolf 510 NAS SSD which is PCIe Gen 3×4 and has incredibly high durability taken into account.

The Seagate Ironwolf 525 SSD – Price & Availability

Details regarding when this drive will be available to buy are incredibly thin on the ground. As mentioned, the low number of PCIe Gen 4.0 server systems, the continued high suitability of the Ironwolf 510 and the storage media market that is only starting to bounce back from over a year of shortages (at least!) all add up to the Seagate Ironwolf 525 not being a drive that needs to arrive in a hurry! The current PCIe Gen 4.0 favourite SSD, the Seagate Firecuda 530 and 520 still continue to support the existing PCIe4 client market in desktop and laptop forms, but for NAS (and indeed all server types) this switch is still very much ‘in progress’. Prices however seem to be a little clearer, with individual distributions sites appearing to agree on the pricing for each capacity at the moment of 500GB being €104 (€125 inc.TAX) 1TB at €173 (€208 inc.TAX) and 2TB arriving at €359 (€430 inc.TAX). Of course, these prices are subject to change, but do serve as an early guide on the pricing of the Seagate Ironwolf 525 and how that price sits with the Ironwolf 510 and Firecuda 520 that are currently available. We will keep an eye on this and update you on the Ironwolf 525 as we learn more, so stay subscribed! If you want to learn more about Seagate NVMe SSDs and how each drive in their current portfolio compares, have a look at the guide below:

Guide to Seagate SSDs HERE – 

 

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do use links to Amazon Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

 

Titanium Micro TH7175 SSD Review – Modest Powerhouse?

20 septembre 2021 à 01:15

Review of the Titanium Micro TH7175 PCIe Gen 4 NVMe SSD

I think it would be fair to say that over the last few weeks I have seen ALOT of SSDs. Because of a myriad of industry affecting events in the last 18 months (Covid, Chia, Trade Wars, Component shortages) the usually regimented and carefully planned release schedules of the SSD brands have been thrown into utter chaos, leading to a huge number of high performing SSDs all landing into the market in the usually quiet summer period. All of these SSDs have been loud and proud about their performance, brash and shouty in proclaiming their superiority over their competitors – all except one. Titanium Micro and their TH7175 PCIe 4.0 SSD is one that you could oh so easily have missed. There is not a hugely well-known brand in the home/commercial sector and are all too often seen in business and enterprise bundled solutions. However, despite their rather modest stance on promoting their products in more consumer-friendly sectors and even the retail packaging of their drives being less number heavy, the Titanium Micro TH7175 is possibly one of the highest performing PCIe 4.0 NMe SSDs that I have reviewed on NASCompares so far in 2021/2022. However is the Titanium Micro TH7175 SSD a little too good to be true? Are there any hidden compromises and does it deserve your data/ Let’s find out in today’s SSD review.

Titanium Micro TH7175 SSD Review – Quick Conclusion

When it comes to the overall performance of the Titanium TH7175, you cannot help but be impressed, as it absolutely delivers on each of it’s claims online. Plus, the fact that the brand is so fantastically understated in its approach compared with other brands in its online marketing and product presentation is pleasingly rare. The physical drive itself is pretty underwhelming and avoids a number of the snazzy labelling for good or bad, so you really only have the performance and stats to go by on this drive, which holds up well. The Price tag, though not as low as some mid/late 2020 released PCIe4 NVMe SSD, is still quite affordable, especially when compared against some of the other Phison E18 enabled SSDs available right now. The availability of this drive is nowhere near as widespread as others tough and this may likely hurt how well it fares in an increasingly busy SSD marketplace! If you are looking for a solid, honest and reliable NVMe SSD for your PCIe 4.0 enabled system, this ticks a lot of boxes for gamers and even has a dependable write speed for those content creators and editors upgrading their storage in 2021/2022. Plus the inclusion of an especially rare yet highly reassuring 7-year warranty is not to be ignored.

PROs of the Titanium Micro TH7175 CONs of the Titanium Micro TH7175
Genuinely Impressive Performance

PS5 Compatibility Confirmed

7 Year Warranty (with Registration)

Available in up to 4TB

1.2 Million Read IOPS (4TB model)

Modest Presentation is a rare treat!

Particularly powerful PC required to crack 7,000MB/s

No Inclusive Heatsink Option

Availability is lower than the bigger brands

Titanium Micro TH7175 SSD Review – Packaging

As already mentioned, Titanium Micro are NOT a particularly loud or over-sharing kind of brand. Indeed, the retail packaging of the TH7175 SSD is fantastically understated, arriving in a simple plastic shell as you might find hanging on a rack of your local grocery store. This kind of packaging is not new in computer components, but is usually found in memory modules and less commercially desirable parts. I query the protection this kind of retail packaging provides to such a delicate component, but am still just a bit surprised at the complete lack of ANYTHING related to the 7,200MB/s+ Sequential Read, 6850MB/s Sequential Write, 1.2M IOPS or anything even remotely boastful (as found in EVERY SINGLE PCIe SSD I have reviewed lately). I cannot decide if this is a good or bad thing yet!

In fact, the ONLY thing I can find on this retail packaging for the Titanium Micro TH7175 SSD that I would describe as boastful/loud is the brand highlighting that this SSD arrives with a 7-year warranty available to the buyer. Yes, SEVEN years, comprising of a 5yr standard warranty and then (if you register online) an additional 2 more years. I have criticised brands like Sabrent previously that have offered 1yr standard warranty and 5years IF you register, but this is very different with the TH7175, as you do genuinely feel like you are getting something ‘extra’ for registering, rather than the registration being required for the 5yr warranty as you find in practically ALL other SSD brands. I can see why they would make a point of highlighting this ‘longer than most’ warranty period.

Unboxing the Titanium Micro TH7175 SSD is a rather brief affair! Inside the plastic shell casing, we only find the SSD itself. The display card has all the information regarding warranty and product information links and this SSD does not feature any 1st party inclusive heatsink. NOTE – I removed the SSD label during the YouTube review to display the on-board components, so although I have attempted to re-apply it carefully/accurately, the slight blemish on the sticker was caused by myself during the reapplication.

The SSD for today’s review is the 1TB version of this series and (again) it is very understated. Lacking the metal top plate of the Sabrent Rocket 4 Plus or the inclusive heatsink of the Gigabyte Aorus 7000s, what we find is a small label that simply denotes the model ID and logo.

Indeed, the label barely covers the NAND/Controller, not that this matters as you would 100% need to use a heatsink of a drive like this! The 1TB model of the Titanium Micro TH7175 is a single-sided SSD and does not suffer from any kind of cramming on the PCB.

The rear side of the Titanium Micro TH7175 has a little more information on the SSD, as well as the clear bocks that the 2 sided 2TB and 4TB models would utilize.

Just before we conducted the full PC benchmark testing, we took the time to test the Titanium Micro TH7175 NVMe m.2 inside the PS5 SSD expansion bay to check it’s compatibility. I am pleased to confirm that the SSD fits like a glove with plenty of room for a standard heatsink (the Eluteng m.2 2-part heatsink was used for the PS5 performance testing coming soon on NASCompares).

Performance testing of the Titanium Micro TH7175 inside the PS5 (using Beta Software 3.1) showed that this SSD benchmarked 6,557.08MB/s Read on the Playstation’s own testing. This puts it more than 1,000MB/s over the recommended minimum for a PS5 storage upgrade and faster in Read and Write than the PS5’s own internal SSD. Impressive.

So that is the physical design and PS5 testing of the Titanium Micro TH7175 SSD. But what about the hardware components themselves and how they perform in further PC testing? Does the Titanium Micro TH7175 cut the mustard in terms of current generation hardware and protocols? Let’s find out.

Titanium Micro TH7175 SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of over 7,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the Titanium Micro TH7175 are quite modern. Indeed, for all the big talk of the Seagate Firecuda 530 hardware (still currently the ‘score to beat’ PCIE Gen4 m.2 NVMe right now) being top tier, the Titanium Micro TH7175 is pretty darn similar on the spec sheet! Below is how it looks:

Titanium Micro TH7175

1TB – $279.99, 2TB – $489.99, 4TB – $999.99

PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.4
NAND 3D TLC 96L NAND
Max Capacity 4TB – Double Sided
Controller Phison E18-PS5018
Warranty 7yr (5+2YR with Reg.)

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Titanium Micro TH7175 SSD Series

The first big, BIG thing to remember here is the controller, that Phison E18. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. This controller is one of the biggest reasons that the Titanium Micro TH7175 can actually back up it’s promises about the 7,000MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Titanium Micro TH7175 is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the Titanium Micro TH7175 does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for theTitanium Micro TH7175 SSD.

Much like the Controller on the Titanium Micro TH7175 being the ‘CPU’, it also has an area of memory. The Titanium Micro TH7175 SSD uses 1GB DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier, 1GB DDR4 on the 1TB, etc.

As mentioned, all available capacities of the Titanium Micro TH7175 arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact that the 2TB can arrive on single-sided SSD boards is very impressive. Physical storage NAND is distributed evenly in order to space out the storage and allow even cooling, NAND wear and performance.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Titanium Micro TH7175 takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Titanium Micro TH7175 use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Titanium Micro TH7175, as it is still (2-3 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Titanium Micro TH7175, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Titanium Micro TH7175 SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Titanium Micro TH7175 SSD arrives in multiple capacities (below). The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the current price of both models around 20-30%!. Below is a breakdown of how each Titanium Micro TH7175 SSD compares:

Brand/Series Titanium Micro TH7175

1TB – $279.99, 2TB – $489.99, 4TB – $999.99

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND 3D TLC 96L NAND 3D TLC Micron B47R 176L BiCS4 96L TLC
Max Capacity 4TB – Double Sided 4TB – Double Sided 2TB
Controller Phison E18-PS5018 Phison E18-PS5018 WD_BLACK G2
Warranty 7yr (5+2YR with Reg.) 5yr 5yr
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Price in $ and $ N/A $139 / £119 $119 / £99
1TB Model 850028113318 ZP1000GM3A013 WDS100T1X0E-00AFY0
Price in $ and $ $259 / £215 $239 / £199 $249 / £169
2TB Model 850028113325 ZP2000GM3A013 WDS200T1X0E-00AFY0
Price in $ and $ $499 / £419 $419 / £379 $399 / £339
4TB Model 850028113967 ZP4000GM3A013 N/A
Price in $ and $ $999 / £820 $949 / £789 N/A
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Total Terabytes Written (TBW) N/A 640TB 300TB
Mean Time Between Failures (MTBF, hours) N/A 1,800,000 1,750,000
DWPD N/A 0.7DWPD 0.3DWPD
1TB Model 850028113318 ZP1000GM3A013 WDS100T1X0E-00AFY0
Total Terabytes Written (TBW) 700TB 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 1600000 1,800,000 1,750,000
DWPD 0.3DWPD 0.7DWPD 0.3DWPD
2TB Model 850028113325 ZP2000GM3A013 WDS200T1X0E-00AFY0
Total Terabytes Written (TBW) 1400TB 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 1600000 1,800,000 1,750,000
DWPD 0.3DWPD 0.7DWPD 0.3DWPD
4TB Model 850028113967 ZP4000GM3A013 N/A
Total Terabytes Written (TBW) 3000TB 5100TB N/A
Mean Time Between Failures (MTBF, hours) 1600000 1,800,000 N/A
DWPD 0.3DWPD 0.7DWPD N/A

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used, rather than t used by those used by competitors. This is an important point because the brand has significantly less pedigree in-home/business SSD media than the likes of Samsung, WD and Seagate and people will want to know they are going to get a product that lasts!

However, despite the use of the Phison E18 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower than those reported by their competitors. Indeed, the Titanium Micro TH7175 is one of the few E18 SSDs that does not cross into the reported 1 Million IOPS mark, maxing out at 700k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Sabrent Rocket 4 Plus, the MSI Spatium M480, the ADATA Gammix S70 and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the Titanium Micro TH7175 is the Seagate Firecuda 530. However, the Titanium Micro TH7175 SSD has been available in the market for almost 3-4 months longer and has certainly embedded itself in the market at that time a fraction more. Below is how these two drives compare:

Brand/Series Titanium Micro TH7175

1TB – $279.99, 2TB – $489.99, 4TB – $999.99

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB N/A 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB N/A 3000MB 4100MB
1TB Model 850028113318 ZP1000GM3A013 WDS100T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7150MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 5600MB 6000MB 5300MB
2TB Model 850028113325 ZP2000GM3A013 WDS200T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7175MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6800MB 6900MB 5100MB
4TB Model 850028113967 ZP4000GM3A013  
Sequential Read (Max, MB/s), 128 KB 7200MB 7300MB N/A
Sequential Write (Max, MB/s), 128 KB 6890MB 6900MB N/A
Brand/Series Titanium Micro TH7175 Seagate Firecuda 530 WD Black SN850
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 N/A 400,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 N/A 700,000 680,000
1TB Model 850028113318 ZP1000GM3A013 WDS100T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 360000 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 645000 1000000 720,000
2TB Model 850028113325 ZP2000GM3A013 WDS200T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 640,000 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 630,000 1,000,000 710,000
4TB Model 850028113967 ZP4000GM3A013  
Random Read (Max, IOPS), 4 KB QD32 660,000 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 1,250,000 1,000,000 N/A

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. Additionally, the WD Black arriving at a better price point, higher IOPS in most tiers and the fact it does this whilst still hitting that 7,000MB/s certainly gives pause for thought. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda or WD Black SN850 is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Let’s get the Titanium Micro TH7175 on the test machine!

Testing the Titanium Micro TH7175 m.2 PCIE4 NVMe SSD

The Titanium Micro TH7175 was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the Titanium Micro TH7175 over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 38C between each test being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The 2nd Test was a 1GB test file and finally, the last test was with a 4GB test file. The system was given 1-minute cool downtime between tests, no screen recording software was used (remove overhead) and a heatsink was used throughout (no reboots)

ATTO Disk Benchmark Test #1

256MB File PEAK Read Throughput  = 6.58GB/s

256MB File PEAK Write Throughput = 5.08GB/s

 


 

ATTO Disk Benchmark Test #2

1GB File PEAK Read Throughput  = 6.57GB/s

1GB File PEAK Write Throughput = 5.12GB/s

 


 

ATTO Disk Benchmark Test #3

4GB File PEAK Read Throughput  = 6.52GB/s

4GB File PEAK Write Throughput = 5.12GB/s

 


 

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. Test were conducted on a 1GB, 4GB and 16GB Test File. I also included a mixed 70/30 read and write task to give a little bit more of a realistic balanced workload. These tests were conducted with 1-minute cooling break in between

CRYSTALDISK MARK 1GB TEST


CRYSTALDISK MARK 4GB TEST


CRYSTALDISK MARK 16GB TEST

Next, I switched to AS SSD benchmark. A much more thorough test through, I used 1GB, 3GB and 5GB test files. Each test includes throughput benchmarks and IOPS that are respective to the larger file sizes (important, if you are reading this and trying to compare against the reported 4K IOPS from the manufacturer).

AS SSD Benchmark Test #1

 


AS SSD Benchmark Test #2

 


AS SSD Benchmark Test #3

 

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

1GB AJA File Test Results (Peak) = 5907MB/s Read & 5433MB/s Write

4GB AJA File Test Results (Peak) = 5874MB/s Read & 5389MB/s Write

16GB AJA File Test Results (Peak) = 5874MB/s Read & 5411MB/s Write

Overall, the Titanium Micro TH7175 was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims. IOPs were a little lower than I expected, but again, we were testing very large file types, so this would have to be taken in context.

Titanium Micro TH7175 SSD Review – Conclusion

When it comes to the overall performance of the Titanium TH7175, you cannot help but be impressed, as it absolutely delivers on each of it’s claims online. Plus, the fact that the brand is so fantastically understated in it’s approach compared with other brands in it’s online marketing and product presentation is pleasingly rare. The physical drive itself is pretty underwhelming and ashews a number of the snazzy labelling for good or bad, so you really only have the performance and stats to go by on this drive, which hold up well. The Price tag, though not as low as some mid/late 2020 released PCIe4 NVMe SSD, is still quite affordable, especially when compared against some of the other Phison E18 enabled SSDs available right now. The availability of this drive is no where near as wide spread as others tough and this may likely hurt how well it fares in an increasingly busy SSD marketplace! If you are looking for a solid, honest and reliable NVMe SSD for your PCIe 4.0 enabled system, this ticks a lot of boxes for gamers and even has a dependable write speed for those content creators and editors upgrading their storage in 2021/2022. Plus the inclusion of an especially rare yet highly reassuring 7 year warranty is not to be ignored.

 

PROs of the Titanium Micro TH7175 CONs of the Titanium Micro TH7175
Genuinely Impressive Performance

PS5 Compatibility Confirmed

7 Year Warranty (with Registration)

Available in up to 4TB

1.2 Million Read IOPS (4TB model)

Modest Presentation is a rare treat!

Particularly powerful PC required to crack 7,000MB/s

No Inclusive Heatsink Option

Availability is lower than the bigger brands


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

ADATA XPG GAMMIX S70 SSD Review – The NEW Score to Beat?

7 septembre 2021 à 08:04

Review of the XPG GAMMIX S70 PCIe Gen 4 NVMe SSD

2021/2022 has been an unbelievable fruitful year for NVMe SSDs! After the initial reveal of a small handful of PCIe4 enabled drives, the sheer onslaught of brands and models that have arrived on the scene to tempt the commercial and prosumer sector has been particularly heavy. With this deluge of releases, the consumer confusion as so many incredibly similar SSDs arrive at once was going to be inevitable and when so many brands and their drives are making similar promises on similar hardware, it is going to take something special for any one particular SSD to stand out. However, that is exactly what the XPG GAMMIX S70 from ADATA has managed to do. Most users who have pre-built devices in their homes or offices stand a better than average chance of having it feature ADATA memory inside and although it is not a big/known name in the conventional sense as Samsung or Seagate, they ARE an incredibly well established and implemented brand in the background. They have supplied numerous SSD devices over the years, but their PCIe 4.0 NVMe M.2 SSD is the one that has really, REALLY got peoples attention. Arriving with a very unique controller that challenges the Phison E18 that most competitors have opted for, along with an inclusive heatsink, advanced LDPC and a price tag that is noticeably lower than its competitors, straight off the bat it has made a significant impact. Then you see that the performance benchmarks supplied from ADATA seemingly indicate that this drive is one of, if not THE highest-performing SSD in the market right now within its tier. Is the ADATA XPG GAMMIX S70 SSD too good to be true? Or does it live up to it’ bold reputation? Let’s find out.

XPG GAMMIX S70 SSD Review – Quick Conclusion

Is the ADATA GAMMIX S70 NVMe SSD the best PCIe SSD to buy right now? It is really hard not to think so! Arriving at a price point that is a noticeable degree lower in price than its competitors, arriving with a higher sequential Read and Write than most of its competitors AND arriving with an included and high-quality heatsink – it is REALLY tough to argue with that! It is by no means perfect, with reported IOPS appearing only a pinch higher than average and fairly standard durability, but these are always going to be factors that are of a specific concern to VERY specific types of buyer. With impressive temperature control, enough architectural differences to stand out from an increasingly busy crowd of PCIe 4 SSDs right now, I think this and the Seagate Firecuda 530 come to an incredibly tied first place for me and even then, the GAMMIX S70 from ADATA still gains an upper hand by virtue of being the better all-round choice for the majority of buyers in 2021/2022. If you are considering buying the ADATA GAMMIX s70 – stop considering and just buy it already!

PROs of the XPG GAMMIX S70 CONs of the XPG GAMMIX S70
Genuinely Impressive Performance

Excellent Value (Especially With the Reported Performance)

PS5 Compatibility Confirmed

Inclusive Heatsink is high quality AND expertly applied

Innogrit Controller is Unique vs the many Phison E18 SSDs out there

Excellent on-board Temp Control

August ’21 Update Increased Performance Further

The heatsink is 15mm high and uniquely shaped, so physical installation should be checked first

Only two capacities are available

 

XPG GAMMIX S70 SSD Review – Packaging

The retail box that the Gammix S70 arrives in is shiny. No, that is not enough. It’s REALLY shiny, covered in holographic sheen and is oozing with gamer focus branding! The box makes a bold impact and although the majority of PCIe 4.0 SSDs in 2021/2022 are quite loud and brash in their presentation, this is a big step up still., especially given that ADATA is generally quite a ‘background’ company in most other components.

The top left of the retail box highlights a number of the drive’s key features that, although fairly standard in PCIe4 M.2 NVMes of late in most cases, still has a few stand out specs. 

Opening up this retail gives us JUST the XPG GAMMIX S70 SSD. No instructions, warranty information (displayed on the rear of the box) or screws, just the SSD+1st party pre-attached heatsink in a plastic shell.

it certainly is a beefy looking SSD in that heatsink, measuring 15mm in height, maybe check the location of where you plan on installing this SSD, as in some cases the height of the heatsink can interfere with your CPU FAN/Heatink physically. It’s a wonderfully unique looking heatsink though and given its inclusion in the price, whilst still remaining competitively prices vs other M.2 PCIe 4 NVMe SSDs, it is a very positive mark in their favour.

Getting a closer look at this SSD and Heatsink, the ADATA XPG GAMMIX S70 is a chunky drive indeed. Unlike most heatsinks that form a single solid rectangular mass of shaped metal formed for vertical vents, this official heatsink is designed in a far more angular fashion, as well as utilizing a closed vent structure.

Looking at the heatsink ‘down the barrel’ and you can see that 1, that heat is directed in a curve from the base and 2, it is then fanned out over a shingled layer curve so that each tier is unobstructed in its heat dissipation. In testing the result was that although the heat of the drive was a pinch warmer than most in idle (measured by CrystalDisk), it never hit the same height as other heatsinks in the most intense tests. This might even be arguable more beneficial, as it will keep the NAND warm but not keep the controller hot (temp graph further blow in the tests)

Nonetheless, this IS a very tall heatsink and can certainly see it being problematic in shuttle/mini-ATX setups.

The base of the heatsink is quite basic, featuring the model IS/Manufacturer details, as well as the usual certification stamps. Additionally, you can make out a thermal pad under the SSD, despite the drive being single-sided.

For those of you who have been considering the ADATA XPG GAMMIX S70 for installation in the PS5 SSD expansion slot to increase storage, I am pleased to confirm that this SSD is 100% supported by the system (currently in software beta, but the Gammix S70 will definitely be on the compatibility list of the full software update release. However, the physical installation needs highlighting.

That unique, inclusive and highlight effective is certainly a nice unit, but in terms of PS5 installation – a bit OTT! Completely filling the slot up to the 2280 mark, it protrudes from the bay and although you can still attach the consoles external panels, you cannot apply the metal bay cover.

Installing the ADATA Gammix S70 in the PS5 M.2 SSD bay at startup allows you to run a benchmark on the drive. Oddly, despite the high performance of this SSD, the PS5 rated the drive at 6,235MB/s in its initial benchmark. Later testing brought this figure much higher to 6,651MB/s, however in the spirit of fairness against other SSD, I am recording the first attempt.

The included heatsink on the XPG Gammix S70 is held in place by 2 SSDs on one side (locked in under a metal lip on the other side) and is very firmly held in place.

Removing the top part of the heatsink revealed the assortment of onboard chips that I will touch on later, but it is definitely worth revisiting the subject of heatsinks and the advantages of ones that are applied by the same manufacturer as the SSD.

As you can see from the thermal pad shape and placement below, it has been specifically made to cover the most important components in their precise location (rather than a general large strip of thermal padding that is much less efficient at the expense of trying to cover everything!

The fact that ADATA includes the heatsink with your purchase of the XPG GAMMIX S70 will always be attractive to buyers who want hassle from installation, as well as doing so at no additional cost and STILL arriving at a lower price point than many competitors is inarguably appealing. So that is the physical design of the XPG GAMMIX S70 SSD. But what about the hardware components themselves? Does the XPG GAMMIX S70 cut the mustard in terms of current generation hardware and protocols? Let’s find out.

XPG GAMMIX S70 SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of over 7,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the XPG GAMMIX S70 are quite modern. Indeed, for all the big talk of the Seagate Firecuda 530 hardware (still currently the ‘score to beat’ PCIE Gen4 m.2 NVMe right now) being top tier, the XPG GAMMIX S70 is pretty darn similar on the spec sheet! Below is how it looks:

ADATA GAMMIX S70

1TB – $159.99, 2TB – $299.99

PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.4
NAND 3D TLC Micron 96L
Max Capacity 2TB – Single Sided
Controller Innogrit IG5236
Warranty 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the XPG GAMMIX S70 SSD Series

The first big, BIG thing to remember here is the controller, that Innogrit RainIer IG5236. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and although Inoogrit has produced several high profile SSD controllers in the last few years, this is their first PCIe 4.0 controller. This is a particularly big deal when most reports and measurements seemingly indicate that the Innogrit IG2536 is higher in performance than the Phison E18 controller used by most other recent PCIe 4 M.2 NVMe SSD, as well as because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Indeed, the XPG Gammix S70 is one of very, VERY few SSDs that are using this controller in the home/prosumer gamer sector.

Earlier in 2021, CDRLabs ran performance testing with CrystalDisk on the Gammix S70 SSD, comparing against a Phison E18 SSD of similar architecture (96L 3D TLC NAND, DDR4 RAM, NVMe 1.4, etc) and largely surpassed it by hundreds of Megabytes in Sequential Read and Write performance. So these results tend to back up the increased performance benchmarks that ADATA provide on the XPG S70. This is further improved with a recent software/firmware update for this drive released in August 2021 that further improved the write performance.

The NAND on the XPG GAMMIX S70 is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the XPG GAMMIX S70 does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for the XPG GAMMIX S70 SSD. Although detailed information on the NAND used is not readily available online, we observed that the XPG GAMMIX S70 featured two blocks of ADATA NAND modules.

Much like the Controller on the XPG GAMMIX S70 being the ‘CPU’, it also has an area of memory. The XPG GAMMIX S70 SSD uses DDR4 memory on board and this in conjunction with the SSD controller provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier, 1GB DDR4 on the 1TB, etc.

As mentioned, all available capacities of the XPG GAMMIX S70 arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact that the 2TB can arrive on single-sided SSD boards is very impressive. Physical storage NAND is distributed evenly in order to space out the storage and allow even cooling, NAND wear and performance.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the XPG GAMMIX S70 takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the XPG GAMMIX S70 use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the XPG GAMMIX S70, as it is still (2-3 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the XPG GAMMIX S70, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

XPG GAMMIX S70 SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The XPG GAMMIX S70 SSD arrives in multiple capacities (below). The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the current price of both models around 10-20%!. Below is a breakdown of how each competitor drive and the XPG GAMMIX S70 SSD compare:

Brand/Series ADATA GAMMIX S70

1TB – $159.99, 2TB – $299.99

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND 3D TLC Micron 96L 3D TLC Micron B47R 176L BiCS4 96L TLC
Max Capacity 2TB – Single Sided 4TB – Double Sided 2TB
Controller Innogrit IG5236 Phison E18-PS5018 WD_BLACK G2
Warranty 5yr 5yr 5yr
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Price in $ and $ N/A $139 / £119 $119 / £99
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Price in $ and $ $199 / £175 $239 / £199 $249 / £169
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Price in $ and $ $399 / £355 $419 / £379 $399 / £339
4TB Model N/A ZP4000GM3A013 N/A
Price in $ and $ N/A $949 / £789 N/A
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Total Terabytes Written (TBW) N/A 640TB 300TB
Mean Time Between Failures (MTBF, hours) N/A 1,800,000 1,750,000
DWPD N/A 0.7DWPD 0.3DWPD
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Total Terabytes Written (TBW) 740TB 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 2,000,000 1,800,000 1,750,000
DWPD 0.4DWPD 0.7DWPD 0.3DWPD
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Total Terabytes Written (TBW) 1480TB 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 2,000,000 1,800,000 1,750,000
DWPD 0.4DWPD 0.7DWPD 0.3DWPD
4TB Model N/A ZP4000GM3A013 N/A
Total Terabytes Written (TBW) N/A 5100TB N/A
Mean Time Between Failures (MTBF, hours) N/A 1,800,000 N/A
DWPD N/A 0.7DWPD N/A

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that 96 Layer 3D TLC NAND used, rather than t used by those used by competitors. This is an important point because the brand has significantly less ‘end user’ recognition in-home/business SSD media than the likes of Samsung, WD and Seagate and people will want to know they are going to get a product from a brand that they have heard of.

However, despite the use of the Innogrit Rainier IG5236 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower (for the most part) than those reported by their competitors. Indeed, the XPG GAMMIX S70 is one of the few SSD/Memory focused brands with a PCIe 4.0 SSD that does not cross into the reported 1 Million IOPS mark, maxing out at 740k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Sabrent Rocket 4 Plus, the MSI Spatium M480, the Gigabyte Aorus 7000s and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the XPG GAMMIX S70 is the Seagate Firecuda 530. However, the XPG GAMMIX S70 SSD has been available in the market for longer and has certainly embedded itself in the minds and budget’s of PC/PS5 gamers who think the Firecuda 530 is too expensive and the others are less impress – it makes a very appealing middle ground. Below is how these drives compare in terms of throughput and IOPS:

Brand/Series ADATA GAMMIX S70

1TB – $159.99, 2TB – $299.99

Seagate Firecuda 530

500GB – $149.99, 1TB – $239.99, 2TB – $489.99, 4TB – $949.99

WD Black SN850

500GB – $169.99, 1TB – $249.99, 2TB – $549.99

500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB N/A 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB N/A 3000MB 4100MB
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7400MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6000MB 5300MB
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7450MB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6800MB 6900MB 5100MB
4TB Model N/A ZP4000GM3A013  
Sequential Read (Max, MB/s), 128 KB N/A 7300MB N/A
Sequential Write (Max, MB/s), 128 KB N/A 6900MB N/A
Brand/Series ADTA GAMMIX S70 Seagate Firecuda 530 WD Black SN850
500GB Model N/A ZP500GM3A013 WDS500G1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 N/A 400,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 N/A 700,000 680,000
1TB Model AGAMMIXS70-1T-C ZP1000GM3A013 WDS100T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 350000 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 720000 1000000 720,000
2TB Model AGAMMIXS70-2T-C ZP2000GM3A013 WDS200T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 650,000 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 740,000 1,000,000 710,000
4TB Model N/A ZP4000GM3A013  
Random Read (Max, IOPS), 4 KB QD32 N/A 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 N/A 1,000,000 N/A

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. Additionally, the WD Black arriving at a better price point, higher IOPS in most tiers and the fact it does this whilst still hitting that 7,000MB/s certainly gives pause for thought. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda or WD Black SN850 is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Remember that you can get 1TB of XPG GAMMIX S70 for the same price as 500GB of the Firecuda 530 – which given the similarity of that performance means that you are getting incredible value! Let’s get the XPG GAMMIX S70 on the test machine!

Testing the XPG GAMMIX S70 m.2 PCIE4 NVMe SSD

The XPG GAMMIX S70 was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the XPG GAMMIX S70 over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out a little higher in idle than most previously tested SSD, HOWEVER, the ADATA Gammix S70 heatsink kept the drive at a consistent temp of late 40’s for most of the tests and did an incredible job of maintaining a working temp without spiralling too high between each one being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The 2nd Test was a 1GB test file and finally, the last test was with a 4GB test file. The system was given 1-minute cool downtime between tests, no screen recording software was used (remove overhead) and a heatsink was used throughout (no reboots)

ATTO Disk Benchmark Test #1

256MB File PEAK Read Throughput  = 6.34GB/s

256MB File PEAK Write Throughput = 5.94GB/s

 


 

ATTO Disk Benchmark Test #2

1GB File PEAK Read Throughput  = 6.34GB/s

1GB File PEAK Write Throughput = 5.91GB/s

 


 

ATTO Disk Benchmark Test #3

4GB File PEAK Read Throughput  = 6.46GB/s

4GB File PEAK Write Throughput = 5.85GB/s

 


 

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. Test were conducted on a 1GB, 4GB and 16GB Test File. I also included a mixed 70/30 read and write task to give a little bit more of a realistic balanced workload. These tests were conducted with 1-minute cooling break in between

CRYSTALDISK MARK 1GB TEST


CRYSTALDISK MARK 4GB TEST


CRYSTALDISK MARK 16GB TEST

 

Next, I switched to AS SSD benchmark. A much more thorough test through, I used 1GB, 3GB and 5GB test files. Each test includes throughput benchmarks and IOPS that are respective to the larger file sizes (important, if you are reading this and trying to compare against the reported 4K IOPS from the manufacturer).

AS SSD Benchmark Test #1

 


AS SSD Benchmark Test #2

 


AS SSD Benchmark Test #3

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

1GB AJA File Test Results (Peak) = 5861MB/s Read & 5039MB/s Write

4GB AJA File Test Results (Peak) = 5874MB/s Read & 5127MB/s Write

16GB AJA File Test Results (Peak) = 5881MB/s Read & 5218MB/s Write

Throughout the testing, the XPS GAMMMIX S70 SSD started at a slightly higher than average temp, but maintained a good operational temperature throughout the whole testing:

Overall, the XPG GAMMIX S70 was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims. IOPs were a little lower than I expected, but again, we were testing very large file types, so this would have to be taken in context.

XPG GAMMIX S70 SSD Review – Conclusion

Is the ADATA GAMMIX S70 NVMe SSD the best PCIe SSD to buy right now? It is really hard not to think so! Arriving at a price point that is a noticeable degree lower in price than its competitors, arriving with a higher sequential Read and Write than most of its competitors AND arriving with an included and high-quality heatsink – it is REALLY tough to argue with that! It is by no means perfect, with reported IOPS appearing only a pinch higher than average and fairly standard durability, but these are always going to be factors that are of a specific concern to VERY specific types of buyers. With impressive temperature control, enough architectural differences to stand out from an increasingly busy crowd of PCIe 4 SSDs right now, I think this and the Seagate Firecuda 530 come to an incredibly tied first place for me and even then, the GAMMIX S70 from ADATA still gains an upper hand by virtue of being the better all-round choice for the majority of buyers in 2021/2022. If you are considering buying the ADATA GAMMIX s70 – stop considering and just buy it already!

 

PROs of the XPG GAMMIX S70 CONs of the XPG GAMMIX S70
Genuinely Impressive Performance

Excellent Value (Especially With the Reported Performance)

PS5 Compatibility Confirmed

Inclusive Heatsink is high quality AND expertly applied

Innogrit Controller is Unique vs the many Phison E18 SSDs out there

Excellent on-board Temp Control

August ’21 Update Increased Performance Further

The heatsink is 15mm high and uniquely shaped, so physical installation should be checked first

Only two capacities are available

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

New 8TB Sabrent Rocket 4 Plus 7000MB/s+ SSD Revealed

31 août 2021 à 07:58

New Sabrent Rocket 4 Plus 8 Terabyte PCIe4 M.2 3D TLC SSD Revealed

Good news for anyone looking to upgrade their PCIe4 m.2 NVMe enabled PC editing or gaming machine with the sneakily quiet reveal that Sabrent is working on an 8TB model to their popular Rocket 4 Plus series of SSDs. This is particularly interesting, given that till now the largest drive we have seen on the market has been an impressive 4TB of storage (from several brands) and although there have been 8TB models of M.2 SSDs available (even in PCIe4), they have been provided with one especially large compromise in the NAND department that has massively downgraded their performance and durability to a point where they are designated as lesser drives and therefore hardly comparable to the top tier SSDs in their premium ranges. This Sabrent SB-RKT4–8TB Rocket 4 Plus 8TB drive though is a very different beast and potentially one of the first drives in the world to manage to balance the scales and provide high storage, high performance, high durability and open the gates commercially to the next tier of M.2 PCIe4 SSD storage. Let’s go through everything we know.

Review of the Sabrent Rocket 4 Plus 4TB Model HERE https://nascompares.com/2021/08/05/sabrent-rocket-4-plus-ssd-review

What Are The Hardware Specifications of the Sabrent 8TB Rocket 4 Plus SSD?

At this time it appears the Sabrent Rocket 4 Plus 8TB model is not especially close to full release and wit that the specifications at this stage are largely unavailable. We DO know that the drive is part of their highest tier NVMe SSD series and therefore a lot of the existing architecture we can already ascertain. Below is everything we know, what we can estimate and how the 8TB model might compare with the rest of the Sabrent Rocket Plus 1, 2 and 4TB models:

Note – Where ‘(est.)’ is stated, I am still awaiting confirmation on these specifications, which are supplied below as based on the previous 4TB release and are provided for general guidance and not from the brand/testing

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

NEW = SB-RKT4P-8TB

Capacity 1TB / 1000GB 2TB / 2000GB 4TB / 4000GB 8TB / 8000GB
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D TLC NAND 96L B27 3D TLC NAND 96L B27 3D TLC NAND 96L B27 3D TLC NAND 96L
Capacity 1TB Single Sided 4TB Double Sided 4TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Memory 1GB 2GB 4GB 8GB
Size 2280 2280 2280 2280
Warranty 5yr 5yr 5yr 5yr
  SB-RKT4P-1TB SB-RKT4P-2TB SB-RKT4P-4TB SB-RKT4P-4TB
Price in $ and $ $179 / £155 $359 / £305 $999 / £810 $1999 / £1699 (est.)
Total Terabytes Written (TBW) 700TB 1400TB 3000TB 6000TB (est.)
Mean Time Between Failures (MTBF, hours) 1600000 1600000 1600000 1600000 (est.)
DWPD 0.4DWPD 0.4DWPD 0.4DWPD 0.4DWPD (est.)
Random Read (Max, IOPS), 4 KB QD32 350000 650000 650000 650000 (est.)
Random Write (Max, IOPS), 4 KB QD32 700000 700000 700000 700000 (est.)
Sequential Read (Max, MB/s), 128 KB 7000MB 7100MB 7100MB 7100MB (est.)
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6850MB 6850MB (est.)

One very important detail that needs focus here is the use of 3D TLC NAND on the new 8TB Sabrent SSD. Now, as mentioned, Sabrent has had an 8TB PCIe4 NVMe M.2 SSD available already, known as the Sabrent Rocket Q4 which is their much more affordable PCIe 4.0 SSD tier. It is labelled as such as it takes advantage of the much more economy sensitive QLC NAND (Quad Layer Cells) which are able to squeeze in a larger amount of data onto the NAND blocks on the PCB board of the SSD. However, the application of QLC NAND, although noticeable lower in price-per-TB, results in significantly lower throughput (i.e Read and Write) than TLC (Triple Layer Cell) NAND that is largely the NAND build of choice for Prosumer/Business SSDs. It also results in a much lower insurance rating (i.e TBW and DWPD) meaning the timeframe for the lifespan of the drive and sustained lifetime performance is much lower. THIS is one of the BIGGEST reasons that the 8TB Rocket 4 Plus model being revealed is such a big deal because it is arriving with 3D TLC NAND and therefore will be expected to hit that 7,000MB/s+ Sequential Read Speed and 6,850MB/s+ Sequential Write as featured in the 2TB and 4TB models (perhaps even possibly surpass it). We still need to wait for full official details on this drive to become public, but it’s a very intriguing and compelling reason to keep the Sabrent 8TB Rocket 4 Plus on your radar in 2021/2022.

When Will the Sabrent Rocket 4 Plus 8TB SSD Be Released?

There is practically no details on when this Sabrent 8TB Rocket 4 Plus SSD media will release, but given the deluge of PCIe4 M.2 NVMe drives released in the last 2 months (as the market catches up from delays and setbacks in the pandemic, semi-conductor shortages, supply chain corrections and existing release roadmap’s being forced to adapt on the fly!) it will be interesting to see if Sabrent can get this drive out to market before big names like Samsung, WD and Seagate can challenge the 8TB tier on these drives. PCIe4 x4 M.2 is going to be around for a while and although PCIe5 is now in discussion and slow implementation will be on the horizon in 2022, it will be by no means mainstream enough to substantially interrupt the growth of PCIe4 M.2 any time soon. With that in mind, Sabrent might well have the time to work on this and not rush it to the door. Perhaps a more formal reveal before the end of the year with something more substantial as a confirmed ETA to follow.

How Much Will the Sabrent 8TB Rocket 4 Plus SSD be?

With so many factors, ranging from the fact that 8TB NVMe PCIe4 m.2 SSD with 3D TLC NAND (96layer) is almost completely industry unheard of at this m.2 length, to the previously mentioned market hurdles in the last 12-18months, if Sabrent can get the 8TB Rocket 4 Plus SB-RKT4P-8TB to market before many of it’s competitors, they will be in a position to be quite high in their pricing. Recent months have led to the price tiering on 1TB, 2TB and 4TB drives no longer strictly adhering to the “doubling your storage means you pay less per TB” and in fact in many cases, a 4TB costs more per terabyte than a 2TB, which in term can be more than a 1TB. Given the relative obscurity of a drive of this type, we will be seeing a drive that will almost certainly weigh in at $1500-2000 at even a conservative estimate. However, until Sabrent make a more formal announcement of this drive and its availability, this is all still very much up in the air!

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 Vs MSI SPATIUM M480 PCIe4 M.2 SSD Comparison

20 août 2021 à 16:00

PCIe 4 NVMe SSD Comparison – MSI Spatium M480 vs Seagate Firecuda 530

The PCIe 4.0 M.2 SSD market continues to grow into the accepted standard in 2021/2022 for performance – and the usual brands are rising to the challenge. If there is only one thing that you take from these comparisons on NVMe SSDs of late, it is that even in this relatively recent tier of Prosumer/Business storage, there is still plenty of choice. In fact, when Seagate revealed their industry beating Firecuda 530 last month, it was largely unchallenged for just a week, before MSI stepped up and formally revealed their new Spatium M480 series. What makes these two SSDs particularly interesting is that they are both based on an incredibly similar architecture and provide arguable comparable throughput too. Alongside this, professional and casual gaming consumers are having to make a choice here between Seagate (a big, BIG name in data storage) and MSI (a big, BIG name in gamer circles) – not as straightforward as you might think. So today I want to talk about these two brands, discuss what they offer in terms of performance, responsiveness, durability and endurance, and hopefully help you decide whether the Firecuda or Spatium M480 deserves your data.

 

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4
NAND 3D TLC Micron B47R 176L B27 3D NAND 96L
Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 Phison E18-PS5018
Warranty 5yr 5yr
 

A quick look at the architecture of each SSDs does NOT show a huge amount of disparity between them at first. Both arrive with PCIe 4.0 M.2 bandwidth (a potential maximum 8,000MB/s), the latest NVMe 1.4 revision and utilizing the cutting edge E18 Phison controller, resulting in over 7,000MB/s performance. However, one key difference we CAN see is in the choice of NAND being used by either NVMe SSD. Though both the Seagate and MSI SSD both use 3D TLC NAND, the M480 USES 96 layer NAND, whereas the Firecuda 530 arrives with an impressive 176 layer NAND – a significant advantage in a number of areas like IOPS and Throughput in the usage of the drive (even affecting endurance). This may seem like a minor point, but the impact of this choice will bear fruit later on. Let’s compare how each drive is priced.

MSI Spatium M480 vs Seagate Firecuda 530 – Price & Capacity

The price tag of the Firecuda 530 and Spatium M480 respectively are both based on the most recently available pricing at the time of writing, though the MSI NVMes might change. Nonetheless, the pricing on each PCIe 4×4 SSD is actually quite comparable and the differences that appear between each capacity model and even in the currency conversion is not too bad. It should also be noted that the prices below are based o nthe M480 and FC530 without a heatsink, though both brands supply a high-quality heatsink kit version at a smaller increased cost. Overall, I would say that the MSI M480 has a lower Price per GB/TB than the Seagate drive, but that is not quite the end of the story, as both brands have providing slightly different series capacity options:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Price in $ and $ $139 / £119 $119 / £105 (TBC)
1TB Model ZP1000GM3A013 M480-1000GB
Price in $ and $ $239 / £199 $239 / £189 (TBC)
2TB Model ZP2000GM3A013 M480-2000GB
Price in $ and $ $419 / £379 $399 / £369 (TBC)
4TB Model ZP4000GM3A013 N/A
Price in $ and $ $949 / £769

Both brands have supplied the 500GB tier (i.e smaller scale gamers, caching, 2+ 4K projects for editing), 1TB (i.e professional gamers, rackmount caching/tiering, 4K/8K editing) and 2TB (i.e Pro Gamers and Streamers, Professional 4K/8K Post Production and enterprise) available in their ranges, but the Seagate Firecuda 530 is one of only around 2-3 brands that supply a 4TB PCIe Gen 4×4 m.2 4TB drive at 2280 length. This is particularly ambitious of the brand, especially when you look a the potential 4 figure price tag. However professional buyers who only want to make a purchase like this once every 5 years at least are going to be attracted to this option. Additionally, because the highest tiers of storage in NVMe are where you find the best performance (with the MASSIVE exception of when a brand uses QLC NAND of course), Seagate has clearly decided to put ALOT of backing on these drives in 2021/2022 to facilitate the biggest budget buyers. The MSI M480 is the winner here in terms of price per GB/TB, but Seagate win on Capacity and potentially on value – but let’s not get too ahead of ourselves yet.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Reported Read & Write Speed

The throughout that the MSI M480 and Firecuda 530 can provide in sequential read and write are close, but on paper, Seagate win. Obviously, these are slightly more idealised benchmarks from the brands themselves and are maximums reported by their tech teams respectively, but even then you can see that the FC 530 provides a heck of a lot! Even in the Seagate Firecuda 530’s weakest tier (the 500GB model) it still outpaces the M480 noticeably. Once again, though both drives feature similar memory/SD, it is that higher-quality NAND that the Seagate features that gives it that edge. Below is a breakdown of the performance of each capacity tier on each NVMe:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Sequential Read (Max, MB/s), 128 KB 7000MB 6500MB
Sequential Write (Max, MB/s), 128 KB 3000MB 2850MB
1TB Model ZP1000GM3A013 M480-1000GB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5500MB
2TB Model ZP2000GM3A013 M480-2000GB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
4TB Model ZP4000GM3A013 N/A
Sequential Read (Max, MB/s), 128 KB 7300MB  
Sequential Write (Max, MB/s), 128 KB 6900MB

Fair play to the MSI for still providing some genuinely impressive performance, eclipsing a number of other 96 layer 3D NAND drives previously compared here. Although neither brand is using an in-house built controller, choosing to use the Phison E18-PS5018 chip, so the fact that they can both hit 7,000MB/s is not too surprising, the fact the FC530 can hit higher in 3 of its 4 available capacities at 7,3000MB/s is the clincher here. Remember, the PCIe 4.0 x4 bandwidth that this drive utilises max’s out at 8,000MB/s, which is getting increasingly close to saturation here! The Seagate Firecuda 530 clearly wins here. Next, we can look at the reported IOPS of these two drives, as this is one of the Achilles heels of the MSI M480 sadly.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Reported IOPS

The IOPs ratings of each of these drives, despite their relatively similar architecture, is significantly different. IOPs, along with the endurance and durability which we will touch on later, is one of the key areas that Seagate say they focused on with the Firecuda 530 and compared with the MSI M480, it shows. Performing twice the random read IOPS at the 500GB and 1TB tiers, they soon break the 1,000,000 IOPS barrier in both random read and write in the higher tiers. Although IOPS are generally a much more business/enterprise metric, they still hold court with professional gamers and in data centre-class AI operations. The 170K random read IOPS on the Spatium M480 is especially low (given the rest of the hardware on that m.2 PCB!) and it eventually maxes out at 650/700K random read/write at the highest tiers. Here is a breakdown:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Random Read (Max, IOPS), 4 KB QD32 400,000 170,000
Random Write (Max, IOPS), 4 KB QD32 700,000 600,000
1TB Model ZP1000GM3A013 M480-1000GB
Random Read (Max, IOPS), 4 KB QD32 800000 350,000
Random Write (Max, IOPS), 4 KB QD32 1000000 700,000
2TB Model ZP2000GM3A013 M480-2000GB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700,000
4TB Model ZP4000GM3A013 N/A
Random Read (Max, IOPS), 4 KB QD32 1,000,000  
Random Write (Max, IOPS), 4 KB QD32 1,000,000

Overall, it is hard to claim this as anything else but a definitive win for the Seagate Firecuda 530 over the MSI M480 in terms of IOPS. Later in 2021, we will be running extended performance testing on these drives to see how well these stats hold up over extended periods, but in all likelihood, these stats will still be comparatively distance between each drive.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Endurance & Durability

Next up, we need to discuss how well these two drives can endure consistent write/rewrites in their predicted 5 year lifespan (i.e in their 5 year warranty period and based on the drives being in constant use). The Endurance and Durability of an SSD is an area that is overlooked often enough that I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability and endurance in 2021/2022 is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and MSI Spatium M480 are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the MSI Spatium M480 and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and MSI Spatium M480 stand on this:

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

500GB Model ZP500GM3A013 M480-500GB
Total Terabytes Written (TBW) 640TB 350TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
1TB Model ZP1000GM3A013 M480-1000GB
Total Terabytes Written (TBW) 1275TB 700TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
2TB Model ZP2000GM3A013 M480-2000GB
Total Terabytes Written (TBW) 2550TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,600,000
DWPD 0.7DWPD 0.38DWPD
4TB Model ZP4000GM3A013 N/A
Total Terabytes Written (TBW) 5100TB  
Mean Time Between Failures (MTBF, hours) 1,800,000  
DWPD 0.7DWPD

Although many users might well dismiss the TBW/DWPD of an SSD, as they do not feel they are going to refresh the data on the drive at that extreme frequency per day, it should be noted that this should also be used as a suitable benchmark for the lifespan of the NAND itself. In other words, jsut because a drive has a 5-year warranty, doesn’t mean you necessarily want to replace it in 5 years! More enduring NAND means both that the SSD will have a longer lifespan AND that it should be able to maintain it’s advertised performance for longer! High DPWD ratings are something that Seagate have been hugely supporting in their ranges for a number of years (they introduced several 1.0 and higher ratings into their Ironwolf and Nytro SSDs of late too). Again, another big win for the Seagate Firecuda 530 over the MSI Spatium M480 –  particularly when you factor in that the FC530 ALSO arrives with 3 years of data recovery services (forensic level) alongside the 5yr warranty too, in their Rescue Recovery services.

 

MSI Spatium M480 vs Seagate Firecuda 530 – Conclusion

It will not come as a huge shock that in comparing the Firecuda 530 and Spatium M480, that the Seagate drive is still largely dominating this comparison and potentially the entire PCIe Gen 4 m.2 market so far. The M480 from MSI is a very good drive that has clearly been geared towards providing gamers and PC professionals some high tier throughput, and it is coming from a brand they already know and trust. However, it is impossible the ignore the comparatively mature decision by Seagate to focus a great deal on endurance and sustained performance and this plays out substantially throughout how these two drives compare and how they will support you later in their lifespan. Yes, the Firecuda 530 arrives at a higher price point, but you get more for your money and the money you save on day 1 with the M480 might end up costing you more in terms of an extra few minutes here or there, every day, week, month and year. If you are on a tighter budget and your NVMe SSD storage requirements are not considered Pro, Business or Enterprise, the M480 will serve you well – but for everyone else, the FC 530 has you covered in spades.

Brand/Series Seagate Firecuda 530

MSI SPATIUM M480

Best Performance  
Best Endurance/Durability  
Best Price for TB  
Best Extras  
Best Value  
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 vs Samsung 980 PRO SSD Comparison

16 août 2021 à 16:02

PCIe 4 NVMe SSD Comparison – Samsung 980 Pro vs Seagate Firecuda 530

One industry that continues to exceed all expectations is solid-state drives (SSD). The accepted norms of storage in terms of capacity, speed and durability have wildly eclipsed those early days of SATA and now the combined might of near-total bandwidth utilisation and sophisticated onboard controllers has resulted in an SSDs capable of 20 times the performance of the first generation flash drives (370MB/s x10) and close to 50 times the speed of regular hard drives (150MB/s x50). It sounds insane but now there are SSD that can provide well over 7000MB/s read that are not only well established and available to consumer buyers, but also surprisingly affordable. Into this slowly growing tier of NVMe M2 PCIe Gen 4 SSD storage, two of the biggest players are Samsung and Seagate with their 980 Pro and Firecuda 530 drives. Released almost an entire year apart, these two drives are still among the most often requested media right now in summer 2021 for gamers, video editors and high-performance storage uses. Although similar in preliminary architecture, as both utilise a significantly higher saturation of the PCIe gen4 potential 8,000MB/s bandwidth available, each brand has geared their drives respective development in a different direction and the result is two drives that may seem similar at first but wildly deviate in what they can do at even a cursory examination. So today I want to compare the Seagate Firecuda 530 against the Samsung 980 Pro to help you decide which one deserves your data. 

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.3c
NAND 3D TLC

3D TLC Micron B47R 176L

3D TLC

1xx-layer layer V6 V-NAND 3-bit TLC

Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 Custom Elpis
Warranty 5 Years

5 Years

Samsung introduced the 980 Pro into the market in summer 2020, during the height of the global pandemic, the US trade war and the start of the semi-conductor shortage – so that was ALOT of early friction to overcome. Despite all of this, the drive has gone from strength to strength and is largely the drive of choice in the early client development of PCIe4 m.2 on motherboards thanks to being one of the first on the market and that custom controller allowing them to break the 7,000MB/s barrier in M.2 form factor before practically everyone else. The Seagate uses the late 2020 formally revealed Phison E18-PS5018 controller (also used by a few other SSD manufacturers), whereas Samsung has its own massive in-house R&D manufacture available and has ait’s own unique custom Elpis controller. We talk in a moment about how this impacts their respective performance, but fair play to Samsung for continuing to keep their SSD development 100% in house with this one. Both drives arrive with 5 years of warranty (though their DWPD/TBW do differ noticeably) which is quite standard, but it is worth highlighting that the Seagate Firecuda 530 also arrives with 3years of data recovery services included. Know as the Seagate Rescue Service, it allows you to access professional data recovery services in the event of accidental deletion, reversing corruption and recovery services at no additional cost (there are T& course). It’s a small extra on the face of it, but for anyone that has lost key data (in the case of this drive utility, I am talking 4K raw video, savegames, editing projects, etc), this is a very noticeable extra to have thrown in!

Samsung 980 Pro vs Seagate Firecuda 530 – Price & Capacity

For most casual users, the price per GB/TB and the variety of available capacities are always going to form a decent chunk of the decision-making process! Both the Firecuda 530 and Samsung 980 Pro are available in 500GB, 1TB and 2TB versions, however, the Samsung also arrives in a modest 250GB model (which may well be useful to NAS users for caching or video editors looking for a smaller, faster drive for current projects (moving them to a slower archive as they go). The Seagate Firecuda has very much gone the other way on this and provides a hefty 4 terabyte (double-sided – cells on either side of the M.2 PCB) that, although rather expensive, is still going to be very attractive to buyers who only want to make this kind of purchase ONCE and want it to suitable for long term storage convenience (Professional Gamers/Pro Streamers with larger constant libraries they need to access relatively on the fly and PS5 console owners looking to take advantage of that storage expansion slot). When it comes to the price tag, Samsung 980 PRO has a tremendous advantage with being released almost a year ago (September 2020) and that has given them a great deal of time to saturate the market with their drive and introduce a greater degree of flexible pricing now in 2021. That said, the prices are not quite as far apart as I would have thought – with around $20-30/£10-20 at each storage capacity tier. See below:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Price in $ and $ $139 / £119 $119 / £109
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Price in $ and $ $239 / £199 $209 / £179
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Price in $ and $ $419 / £379 $390 / £369
4TB Model ZP4000GM3A013 N/A
Price in $ and $ $949 / £769 N/A

The Samsung 980 PRO is easily going to be the lower-priced of the two, even if you ignore the RRP of each brand, the 980 PRO will be on sale at one retailer or another just as the Seagate Firecuda 530 gets out of the gate! We will talk a little more about Value later on, but if the pricetag is paramount to you (perhaps you are on a tighter budget or are buying multiple NVMe SSD units) then Samsung win this one easily. However in capacity, these two PCIe 4.0 M.2 SSDs are harder to compare, given they differ ever so slightly. I do like that the Samsung 980 PRO arrives in the smaller 250GB capacity model, as some hybrid storage users or those looking for their OS/Steam Library for 1-2 AAA games, will like this smaller unit at around $89/£70 (though the performance is lesser – important). However, the Firecuda 530 arriving in 4TB is an unignorable power flex from Seagate, being only 1 of 2 PCIe 4.0m.2 NVMe 7,000MB/s+ available in the market (the other being the Sabrent Rocket Plus SB-RKT4P-4TB for $999). Yes, it is a hefty price tag at $949 at launch, but it still works out as $237 per TB, has by FAR the fastest performance of any of the other drives and means you only need to make this purchase ONCE. So, overall, I think the Seagate Firecuda 530 takes the win for its approach to capacity.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Reported Read & Write Speed

NOW we are talking! Moving away from price, let’s talk about what these two top tier NVMe PCIe 4.0 M.2 SSDs can give you in terms of traditional Read and Write performance. Ever since we first started seeing PCIe4 SSDs arrive, it has been a case of how much of the potential 8,000MB/s they could saturate with sophisticated controllers, SDRAM and NAND. The first-gen looked good at 5,000MB/s, but was soon eclipsed when Samsung 980 PRO entered the market last summer/autumn with their 7,000MB/s Read drive. Indeed, although the 250GB and 500GB drives dip slightly to 6,400/6,900MB/s respectively, the 1TB and 2TB models can reach that 7,000MB/s mark, which is great news for gamers that prioritize reading those core game files for streaming/casual gaming. However, their write speeds (a key concern for video editors and advanced content creators in general) largely cap at 5,000MB/s for the most part – still VERY impressive and Samsung have not been secretive about this, but it is still a noticeable difference. The Seagate Firecuda 530 series, thanks to a newer revision of NVMe (NVMe 1.4 over NVMe 1.3c) as well as the 176 layer 3D NAND (improving performance and relative durability, covering later). Samsung don’t disclose the layer count but claim it to be 40% more than their previous generation at 92 layers, so it is assumed to be 128L 3D NAND. The 500GB model from Seagate drops the ball a bit in terms of write speed, at a comparatively lowly 3,000MB/s (which does make the 500GB model much less appealing) but from there, the 1TB, 2TB and 4TB models all massively surpass the majority of other SSD in the market right now, reaching 6,000MB/s – 6,900MB/s in sequential Write and smashing an impressive 7,300MB/s in sequential Read – genuinely staggering and for manufactures to be getting so close to the theoretical 8,000MB/s max of PCie 4×4 M.2 so early cannot be ignored! See below:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Sequential Read (Max, MB/s), 128 KB 7000MB 6900MB
Sequential Write (Max, MB/s), 128 KB 3000MB 5000MB
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5000MB
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 5100MB
4TB Model ZP4000GM3A013 N/A
Sequential Read (Max, MB/s), 128 KB 7300MB N/A
Sequential Write (Max, MB/s), 128 KB 6900MB N/A

As the chart above indicates, Seagate Firecuda 530 almost completely wins the performance comparison for traditional Read/Write activity. Given its later release, slightly higher price tag and increase NAND quality/layers, this is what you would expect and unless Samsung release a new revision of the PRO SSD series in 2021/2022, the Firecuda 530 wins this round in spades.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Reported IOPS

The performance of the Samsung 980 Pro and Seagate Friecuda 530 in terms of IOPS are actually surprisingly similar. Indeed, only the 500GB model ZP500GM3A013 and MZ-V8P500BW give us much difference of note. Both drive manufacturers report that they hit the 1,000,000 input/output operations per second threshold. So that means that these drives pass through data incredibly well. I mention the 500GB model, as the Samsung 980 Pro largely dwarfs the Firecuda 530 at this tier, with twice the random read IOPS and 40% or so more on random write IOPS. I would be interested to see if this is because of NAND placement (as the larger 2TB Firecuda 530 matches the Samsung 980 PRO, but is double-sided)  or total GB per physical cell and more/less over-provisioning in place – but for now we can definitely see that buyers looking for premium IOPS on a 500GB scratch/current-projects drive will see better results on the Samsung 980 PRO (also remember that the 500GB 980 Pro also had superior traditional Write too).  Below is breakdown on the reported IOPS on each drive:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Random Read (Max, IOPS), 4 KB QD32 400,000 800,000
Random Write (Max, IOPS), 4 KB QD32 700,000 1,000,000
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Random Read (Max, IOPS), 4 KB QD32 800000 1000000
Random Write (Max, IOPS), 4 KB QD32 1000000 1000000
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Random Read (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
4TB Model ZP4000GM3A013 N/A
Random Read (Max, IOPS), 4 KB QD32 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 1,000,000 N/A

IOPS are always going to be a tricky measurement of an SSD. Individually (i.e the M.2 NVMe in a single drive-use environment like a console or OS), the IOPS will translate to a much more responsive system. However this is still a question of near-milliseconds and the minute you introduce multiple PCIE4 M.2 SSDs RAID’d into a single system, then the multiplication of these IOPS and bottleneck of the rest of the system will level the playing field massively. The Samsung 980 Pro easily provides the best IOPS and excellent price-vs-R/W throughput on the 500GB level and makes it the clear choice at that capacity. However, in practically all over tiers they are level for the most part and unless you are running these drives in massive sessions individually (ie a streamer or eSport professional running daily 4-6hr sessions), then either of the Samsung 980 Pro or Seagate Firecuda 530 will be a suitable choice at 1TB and higher in terms of responsiveness.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Endurance & Durability

The importance of IOPS and Throughput are all well and good, but how long the SSD can maintain those speeds and operation in general as the years go by is an increasing concern in 2021/2022. The Firecuda 530 and 980 PRO are rated quite differently in terms of Endurance and Durability, so I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and Samsung 980 PRO are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the Samsung 980 PRO and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and Samsung 980 PRO stand on this, as the extra 10-12 months that the Firecuda spent ‘in the oven’ has seemingly produced rather large improvements in it’s predicted lifespan:

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

500GB Model ZP500GM3A013 MZ-V8P500BW
Total Terabytes Written (TBW) 640TB 300TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
1TB Model ZP1000GM3A013 MZ-V8P1T0BW
Total Terabytes Written (TBW) 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
2TB Model ZP2000GM3A013 MZ-V8P2T0BW
Total Terabytes Written (TBW) 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,500,000
DWPD 0.7DWPD 0.3DWPD
4TB Model ZP4000GM3A013 N/A
Total Terabytes Written (TBW) 5100TB N/A
Mean Time Between Failures (MTBF, hours) 1,800,000 N/A
DWPD 0.7DWPD 0.3DWPD

Whether it is that Phison E18 controller having better-balanced wear management, the  176 layer 3D NAND or just generally more refinement of the handling as PCIe4 m.2 is explored, there is no ignoring that 0.7 drive writes per day of the Firecuda 530 being more than double that of the Samsung 980 Pro. This is not the first time Seagate have prioritized DWPD and TBW in their SSD media (their first entries into 24×7 NAS SSD featuring 1.0DWPD, practically unheard of at that tier) and given that Samsung have some of the most sophisticated and well-engineered in-house R&D operations in the world (only really challenged by WD), it is very surprising this is drive only has a 30% drive fill per day rating. I won’t focus too much on the MTBF (although clearly there are differences) as it is far less relevant as a spec these days, but in summary and in terms of durability, endurance and predicted lifespan – the Seagate Firecuda 530 wins by a country mile here.

 

Samsung 980 Pro vs Seagate Firecuda 530 – Conclusion

The Seagate Firecuda 530 is the more recently released drive of the two and it shows. Samsung heavily occupied the PCIe4 M.2 SSD market when this tier of Prosumer media (at the client-manufacturer level) arrived last year. But, as incredible as it sounds, the Samsung 980 Pro is in danger of looking a little slow as the rest of the market produces their own faster and more enduring alternatives in the Firecuda 530, the MSI SPATIUM M480 and Sabrent Rocket Plus. The Samsung 980 Pro still an incredible feat of development and construction, but much like my comparison of the Firecuda 530 and WD Black SN850, entering the market before full widespread adoption of your kind of product is better established can sometimes lead to competitors being given more time to overtake. Adoption of PCIe 4.0 M.2 SSD is still by no means ‘standardised’ and even now, numerous mobo manufacturers taht support the technology either do so using bandwidth sharing on the board OR choose to dedicate those potential PCIe 4.0 lanes to a traditional PCIe upgrade slot over M.2.The Samsung 980 Pro is an EXCELLENT SSD and provides the best price for this kind of performance at every capacity tier (not just compared with the Firecuda 530, but against pretty much ALL of the other PCIe4 M.2s on the market right now) which is thanks in a big way to it’s earlier release than most. However, it is impossible to ignore that the Seagate Firecuda 530 has used that extra time in development very wisely and has produced a higher-performing drive for the most part, with a much more enduring lifespan and ultimately better VALUE overall. I recommend buying the Firecuda 530 right now or wait until Samsung revisit their PRO series to see how where they can push things even further!

 

Brand/Series Seagate Firecuda 530

Samsung 980 Pro

Best Performance
Best Endurance/Durability
Best Price for TB
Best Extras
Best Value
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Gigabyte AORUS 7000s NVMe SSD Review – Ground Breaking or Game Breaking?

12 août 2021 à 14:45

Review of the Gigabyte Aorus 7000s PCIe Gen 4 NVMe SSD

Remember when PCIe Gen 4 m.2 NVMes were a new thing? Doesn’t seem that long ago, does it? In fact, the first generation of M.2 SSDs to take advantage of the 8GB/s possible via PCIe 4×4 is barely a year old and in the first half of 2021, we saw the 2nd generation quickly obliterate our understanding of what an SSD can do, with the Aorus 7000s from Gigabyte is a great example of this. Although by no means the first the take a stab at the 7GB/s Seq Read SSD market (with the WD Black SN850, Samsung 980 Pro and Sabrent Rocket 4 Plus getting their products to market before everyone else), it does arrive with hardware architecture, top-end performance and a price point that gives those other brands SSDs something to stop and think about. Plus it is now on the PS5 SSD compatibility list, so many keen gamers will be considering it for their next big storage upgrade. The Aorus 7000s is an SSD by motherboard manufacturer Gigabyte who know a thing or two about PC architecture, but how much of this lends well to NAND based storage? They are utilizing the popular Phison E18 controller, 96 layer 3D TLC Micron NAND and DDR4 memory on their tiny 2280 SSDs, so things look good on the spec sheet, but how good is the Aorus 7000 SSD in reality? Let’s have a close look at this SSD and decide whether the 7000S deserves your data?

Gigabyte Aorus 7000s SSD Review – Quick Conclusion

You cannot fault the Aorus 7000s NVMe SSD for its performance in 2021/2022, as it does not over-promise on what it can do. We ran all our usual tests and it hit the highs and lows of Throughput and comparative IOPS to others, just as the brand volunteered. The Gigabyte Aorus is a mature and grown-up SSD and not one that is trying to challenge bigger drives like the Seagate Firecuda 530. Had it been released a few months earlier, it would have made a significantly bigger splash on the professional gaming and video editing market, but now runs the sight risk of getting lost in the paddock of Phison E18 SSDs that are arriving on the market around this. The Aorus’ price point and availability certainly make it appealing, but the shaky SSD market making a slow recovery from Pandemic changes, Chia stock issues and semiconductor shortages means this SSD might not be as desirable as it should be when it is not as abundant at the manufacturing level as the likes of Seagate, Samsung and WD’s offerings being so copious. This IS a good SSD and although the IOPs are a touch lower than I would like, its durability, performance at both 1TB and 2TB and inclusive slimline prosumer heatsink make it a very good drive indeed!

PROs of the Gigabyte Aorus 7000s CONs of the Gigabyte Aorus 7000s
Genuinely Impressive Performance

Made by a Gamer Mobo Preferred Manf

PS5 Compatibility Confirmed

Heatsink Included and PS5 Compatible

96 Layer 3D TLC NAND Hugely Beneficial

Phison E18 SSDs Always Delivery!

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) is unimpressive

Still Outperformed by the Firecuda 530

Gigabyte Aorus 7000s SSD Review – Packaging

The Aorus 7000S arrives in a petite 2 stage card box retail box. The shiny holographic logos and text immediately throw me back to my childhood and I would be lying if I said I didn’t spend a few extra seconds playing with it in the light- sue me! It is quite a tight fit and there is not a vast amount inside.

The Aorus arrives with an inclusive first-party heatsink which arrives pre-applied and sealed by 4 screws. I was immediately impressed by this heatsink and it toes a fine line between effectiveness and sharp design, whilst still arriving surprisingly compact. Indeed in recent weeks, I have been talking about heatsinks more and more (like the use of M.2 NVMe SSD has become increasingly mainstream and people do not know how VITAL these things are).

Let’s be clear, M.2 NVMe SSD heatsinks are NOT expensive, ranging from $8 for the most basic to higher-end engineering examples at $20-30. The Aorus SSD heatsink is compatible with many $15 examples and does certainly give you a feeling of quality. Indeed, the fact some SSDs arrive with optional heatsinks, given the affordable price point, seems crazy to me. Yes, there is the argument that users might already own their own prosumer heatsink or using a compact/custom setup that has its own heat dissipation methods, but the larger portion of the audience would have to faff about getting another one. So yeah, kudos to Gigabyte (again, motherboard manufacturers – important there!) for including this and making an effort on it!

The Aorus 7000s is a 2280 length SSD and it is completely contained in the 2 part surround heatsink.

There is a good level of ventilation space on both the top and sides of the heatsink, whilst still ensuring not to rise the M.2 key connector (something of a problem with larger heatsinks and double-sided SSDs).

Indeed, the M.2 connector is the ONLY part not completely covered in heat dissipation panels. The Aorus 7000s 1TB is a single-sided NVMe SSD, but both sides of the drive are buffed with thermal panelling.

Removing the four screws on the sides of the Aorus 7000s heatsink was quick work, however, the surrounding metal heatsink cage is tightly connected together and removing the SSD from both heatsink panels and thermal pads was actually a lot harder than you might think.

indeed, the Aorus 7000s SSD is so tightly caged in this petite heatsink that the indentation of the chips on the thermal panels is remarkably defined! There is little to no overspill and I can definitely say this is a very slick application (which I have now spoiled) and leaves me feeling confident in how well it will protect the drive in use from temp rises.

Interestingly, if you line the heatsink and Aorus 7000s up, you can see that the additional flow lines of the top line up directly over the Phison E18 and 1GB DDR4 memory, which is exactly what I like to see for focused airflow/dissipation. This is a nice little design mark and something that many could easily blink and miss.

Removing the heatsink entirely, we can take a much closer look at the Gigabyte Aorus 7000s chips on the 2280 PCB. Again this SSD is single-sided, so the distribution of the NAND, Memory and controller are all lined up neatly.

The other side is the bare board. Larger capacities will of course take advantage of this additional space.

So that is the physical design of the Aorus 7000s SSD. But what about the hardware components themselves? Does the Gigabyte Aorus 7000S cut the mustard in terms of current generation hardware and protocols? Let’s find out.

Gigabyte Aorus 7000s SSD Review – Hardware Specifications

As you might expect from an M.2 NVMe SSD that boldly promises performance of 7,000MB/s sequential read (ie BIG data), the hardware specifications and architecture of the Aorus 7000s are quite modern. Indeed, for all the big talk of the Seagate Firecuda 530 hardware (still currently the ‘score to beat’ PCIE Gen4 m.2 NVMe right now) being top tier, the Gigabyte Aorus 7000s is pretty darn similar on the spec sheet! Below is how it looks:

Brand/Series AORUS Gen4 7000s
PCIe Generation PCIe Gen 4
NVMe Rev NVMe 1.4
NAND B27 3D NAND 96L
Max Capacity 2TB
Controller Phison E18-PS5018
Warranty 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Gigabyte Aorus 7000S SSD Series

The first big, BIG thing to remember here is the controller, that Phison E18. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. This controller is one of the biggest reasons that the Gigabyte Aorus 7000s can actually backup it’s promises about the 7,000MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Gigabyte Aorus 7000s is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the Gigabyte Aorus 7000s does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for the Aorus 7000S SSD.

Much like the Controller on the Aorus 7000s being the ‘CPU’, it also has an area of memory. The Gigabyte Aorus SSD uses 1GB DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB or 2TB SSD you use, with 2GB of DDR4 at the on the 2TB tier.

As mentioned, both available capacities of the Gigabyte Aorus 7000s arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact they arrive on single-sided SSD boards is very impressive. Physical storage NAND is distributed evenly in order to space out the storage and allow even cooling, NAND wear and performance. Do remember that this means you won’t need to be so attentive in provisioning for heat dissipation on both sides of the NVMe M.2 SSD, as the 7000S includes a decent heatsink anyway that uses a metal surrounding heatsink and base level thermal heat pads, this is all largely taken care of.

Finally, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Gigabyte Aorus 7000s takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Gigabyte Aorus 7000s use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Gigabyte Aorus 7000s, as it is still (2-3 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Gigabyte Aorus 7000s, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Gigabyte Aorus 7000s SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Gigabyte Aorus 7000s SSD arrives in two capacities at 1TB and 2TB. The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic, Chia has affected SSD availability in the last 12 months and most recently the announcement that PS5 supports this SSD and it has increased the current price of both models around 20-30%!. Below is a breakdown of how each Aorus 7000s SSD compares:

Brand/Series

 

AORUS Gen4 7000s

AORUS Gen4 7000s

PRICE GP-AG70S1TB GP-AG70S2TB
Price in $ and $ $199 / £189 $359 / £399
Throughput GP-AG70S1TB GP-AG70S2TB
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB
IOPS GP-AG70S1TB GP-AG70S2TB
Random Read (Max, IOPS), 4 KB QD32 350,000 650,000
Random Write (Max, IOPS), 4 KB QD32 700,000 700,000
ENDURANCE GP-AG70S1TB GP-AG70S2TB
Total Terabytes Written (TBW) 700TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,600,000 1,600,000
DWPD 0.38DWPD 0.38DWPD

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used, rather than the 64 Layer used by competitors. This is an important point because Gigabyte has significantly less pedigree in SSD media than the likes of Samsung, WD and Seagate (being much better know for motherboard manufacturing) and people will want to know they are going to get a product that lasts!

However, despite the use of the Phison E18 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower than those reported by their competitors. Indeed, the Gigabyte Aorus 7000s is one of the few E18 SSDs that does not crossing into the reported 1 Million IOPS mark, maxing out at 700k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Sabrent Rocket 4 Plus, the MSI Spatium M480, the ADATA Gammix S70 and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the Gigabyte Aorus 7000s is the Seagate Firecuda 530. However, the Gigabyte SSD has been available in the market for almost 3-4 months longer and has certainly embedded itself in the market at that time a fraction more. Below is how these two drives compare:

Brand/Series

 

AORUS Gen4 7000s

AORUS Gen4 7000s

Seagate Firecuda 530

Seagate Firecuda 530

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L 3D TLC Micron B47R 176L 3D TLC Micron B47R 176L
Max Capacity 2TB 2TB 4TB – Double Sided 4TB – Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Warranty 5yr 5yr 5yr + Rescue 5yr + Rescue
Brand/Series AORUS Gen4 7000s AORUS Gen4 7000s Seagate Firecuda 530 Seagate Firecuda 530
PRICE GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Price in $ and $ $199 / £189 $359 / £399 $239 / £199 $419 / £379
Throughput GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB 7300MB 7300MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6000MB 6900MB
IOPS GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Random Read (Max, IOPS), 4 KB QD32 350,000 650,000 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 700,000 700,000 1000000 1,000,000
ENDURANCE GP-AG70S1TB GP-AG70S2TB ZP1000GM3A013 ZP2000GM3A013
Total Terabytes Written (TBW) 700TB 1400TB 1275TB 2550TB
Mean Time Between Failures (MTBF, hours) 1,600,000 1,600,000 1,800,000 1,800,000
DWPD 0.38DWPD 0.38DWPD 0.7DWPD 0.7DWPD

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda release is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Let’s get the Gigabyte Aorus 7000s on the test machine!

Testing the Gigabyte Aorus 7000s 1TB m.2 PCIE4 NVMe SSD

The Gigabyte Aorus 7000s 1TB was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times (full details of this are shown in the YouTube Review of the Gigabyte Aorus 7000s over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

ImportantIt became quite clear in early testing that my test machine, despite being quite high powered, was still not quite enough to get the truest speed out of this SSD. Factors such as my OS drive being a SATA drive, capture software, embedded graphics rather than GPU card resulting in the larger graphical file testing being fractionally capped, meaning that although this drive maxed at 6,995MB/s Seq Read on my system, it definitely felt that it could have gone a pinch higher and broken into the 7,000MB/s with a more powerful system. That said, these higher benchmarks are generally allied to larger/sequential data (i.e BIG single files) and you should really focus on smaller random benchmarks. I wanted to add this disclaimer.

REVIEW VIDEO

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 41C between each test being conducted.

CRYSTAL DISK SPECS

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The Read and Write easily hit the 6,000MB/s+ area and hit 6,590MB/s Read but 4960MB/s write. However, the bottleneck of my system capped this in ATTO quite noticeably. Additionally, the IOPS benchmarks in ATTO for the Gigabyte Aorus 7000s were good, but as expected, not breathtaking. Next, I repeated these tests with a 1GB test file.

The larger test file, unsurprisingly, produced higher results of sequential Read/Write at 6,590MB/s and 4,980MB/s respectively – that write is still a pinch less than I would like to see, even at 1TB over PCIe with the Phison E18. The IOPS still maintained a similar level as before.

Finally, I completed the ATTO Benchmark tests with a 4GB Test file and the performance remained consistent:

Finally, to conclude the ATTO testing, I switched to a bigger 4GB file and re-ran the program. This ended up maxing out at a read/write of 6,590MB/s and 6,585MB/s respectively – which although still not cracking the reported 7,000MB/s is still mighty impressive.

Next, although the ATTO tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. 1GB file test files provided:

Although this never crossed into the 7,000MBs mark (I suspect down to my test hardware), both in the 1GB test and when I tested the 4GB test file routine, we saw increased benchmark scores 6,975MB/s Read and 5,508MB/s Write, as well as increased IOPS reported. Given the 1TB Gigabyte Aorus 7000s model is rated at 7,000/5,500MB/s, this is remarkably close to hitting the maximum reported benchmark!

Finally, I went for the biggest test file at 16GB on AS SSD and this still gave some solid results and although the IOPs were a pinch lower, this might have hit closer to that reported 700/350K with use of a Xeon test machine:

Next, I switched to AS SSD for benchmarks. First up was 1GB file testing, both on sequential and 4K random:

The results were a pinch lower than I would have liked to see, so I then moved onto the 3G test file. These were noticeably better, both in transfers and 4K random:

I decided to chase this a little further and upped the ASS SSD Test file to 5GB and was pleased with the results. Still ‘on paper’ not as high as the Crystal Diskmark tests.

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory on board. Nevertheless, in the short term we still could ascertain the reported performance on 1GB, 4GB and 16GB file testing was:

256MB AJA File Test Results (Max) = 5,907MB/s Read & 5,400MB/s Write

1GB AJA File Test Results (Max) = 5,881MB/s Read & 5,427MB/s Write

4GB AJA File Test Results (Max) = 5,974MB/s Read & 5,372MB/s Write

16GB AJA File Test Results (Max) = 5,974MB/s Read & 5,427MB/s Write

Overall, the Gigabyte Aorus 7000s was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims.

Gigabyte Aorus 7000s SSD Review – Conclusion

It is very hard to find any real fault in the Gigabyte Aorus. I know that sounds spectacularly restrained praise, but that is only because the Aorus 7000s finds itself in a rather more densely populated tier of the industry than it should have been! The architecture, performance, endurance and build are definitely impressive and give me a tremendous sense of confidence in the product, but because it is so similar to other SSDs like the MSI SPATIUM M480 and Sabrent Rocket 4 Plus, it blends in with them, rather than standing out on its own merit. I DO like the Aorus 7000s, genuinely love the inclusive heatsink (not just the fact it is included, but the quality of the thing!) and would DEFINITELY recommend it. I just wish it could stand out from the crowd a little more!

You cannot fault the Aorus 7000s NVMe SSD for its performance in 2021/2022, as it does not over-promise on what it can do. We ran all our usual tests and it hit the highs and lows of Throughput and comparative IOPS to others, just as the brand volunteered. The Gigabyte Aorus is a mature and grown-up SSD and not one that is trying to challenge bigger drives like the Seagate Firecuda 530. Had it been released a few months earlier, it would have made a significantly bigger splash on the professional gaming and video editing market, but now runs the sight risk of getting lost in the paddock of Phison E18 SSDs that are arriving on the market around this. The Aorus’ price point and availability certainly make it appealing, but the shaky SSD market making a slow recovery from Pandemic changes, Chia stock issues and semiconductor shortages means this SSD might not be as desirable as it should be when it is not as abundant at the manufacturing level as the likes of Seagate, Samsung and WD’s offerings being so copious. This IS a good SSD and although the IOPs are a touch lower than I would like, its durability, performance at both 1TB and 2TB and inclusive slimline prosumer heatsink make it a very good drive indeed!

PROs of the Gigabyte Aorus 7000s CONs of the Gigabyte Aorus 7000s
Genuinely Impressive Performance

Made by a Gamer Mobo Preferred Manf

PS5 Compatibility Confirmed

Heatsink Included and PS5 Compatible

96 Layer 3D TLC NAND Hugely Beneficial

Phison E18 SSDs Always Delivery!

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) is unimpressive

Still Outperformed by the Firecuda 530

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Seagate Firecuda 530 vs WD Black SN850 SSD Comparison

11 août 2021 à 16:25

PCIe 4 NVMe SSD Comparison – WD Black SN850 vs Seagate Firecuda 530

If you have recently purchased a modern generation gaming PC, Video setup or new generation console, then chances are that when looking at optimal storage media for your system, you likely narrowed your choices down to the Seagate Firecuda 530 (released in summer 2021) or the WD Black SN850 (released in Winter 2020) SSD. Although these two drives look incredibly similar to numerous M.2 media that came before, these solid-state NVMe drives represent the highest-performing PCIe 4.0 that either brand’s respective gamer/prosumer series have to offer, each hitting (and in some cases exceeding) 7,000MB/s performance. Both of these drives are able to exceed pretty much all of the understood maximums thanks to several key factors in their architecture. That said, that very modern architecture varies quite wildly as soon as you take even a casual glance at the specifications and its impacts on performance, durability and capacity is actually quite significant. So, today I want to take a good look at the Firecuda 530 and WD Black SN850 SSD to see whether they excel, where they fall short of their competitor and, ultimately, which one deserves your data! First up, let’s take a look at the early architecture here:

Brand/Series Seagate Firecuda 530

WD Black SN850

PCIe Generation PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4
NAND 3D TLC Micron B47R 176L BiCS4 96L TLC
Max Capacity 4TB – Double Sided 2TB
Controller Phison E18-PS5018 WD_BLACK G2
Warranty 5yr 5yr
 

So, one of the earliest differences between each drive as we can see is the NAND being utilized and laters. Both use TLC 3D Memory (par of the course for 2021 – finding a good line between capacity, performance and durability over MLC/QLC on either side of the scale) but there Seagate Firecuda 530 uses the higher-performing 176L vertically stacked layers, allowing greater performance and greater capacity per physical cell (with the Seagate Firecuda 530 SSD having a current capacity cap of 4 Terabytes and the WD Black at 50% less on 2TB). For those confirmed with endurance (which we will touch on later on) the 176L over the 96L does not result in negatives on durability (quite the opposite in fact) and both of these SSDs are managed by impressive top tier controllers. The Seagate uses the late 2020 formally revealed Phison E18-PS5018 controller (also used by a few other SSD manufacturers), whereas WD has its own massive in-house R&D manufacture available and has ait’s own unique WD Black G2 controller. We talk in a moment about how this impacts their respective performance, but fair play to WD for continuing to keep their SSD development 100% in house with this one. Both drives arrive with 5 years of warranty (though their DWPD/TBW do differ noticeably) which is quite standard, but it is worth highlighting that the Seagate Firecuda 530 also arrives with 3years of data recovery services included. Know as the Seagate Rescue Service, it allows you to access professional data recovery services in the event of accidental deletion, reversing corruption and recovery services at no additional cost (there are T& course). It’s a small extra on the face of it, but for anyone that has lost key data (in the case of this drive utility, I am talking 4K raw video, savegames, editing projects, etc), this is a very noticeable extra to have thrown in!

WD Black SN850 vs Seagate Firecuda 530 – Price & Capacity

For many users, the size of an SSD and the price tag is going to be the most compelling argument one way to another on the best drive for their needs. Though the price you pay and the total storage ARE important, SSD like the WD Black SN850 and Seagate Firecuda 530 are much more than that. That said, it is fair to say that the WD Black SN850 provides the best price per GB/TB on every tier (500GB, 1TB and 2TB). Although there are regional differences that go beyond currency conversion (see the 2TB in £ vs $) and recent hardware shortages because of semiconductor shortages and Chia also played their part, the fact the WD Black arrived on the market 6+ months early has resulted in the price being a little more flexible right now – leading to it being at the lower price.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Price in $ and $ $139 / £119 $119 / £99
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Price in $ and $ $239 / £199 $249 / £169
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Price in $ and $ $419 / £379 $399 / £339
4TB Model ZP4000GM3A013  
Price in $ and $ $949 / £769 N/A

However, there capacity differs slightly, with the Seagate Firecuda 530 NVMe SSD arriving at the larger 4TB – though at an eye-watering price point! If the cost of the SSD is an absolutely huge factor in your decision, the WD BLACK SN850 SSD clearly wins here, however it is worth taking a moment to read further to see what you get for your money – as, in some of the higher tiers, the difference between Price and Value is a great deal clearer.

 

WD Black SN850 vs Seagate Firecuda 530 – Reported Read & Write Speed

Whereas the WD Black SN850 took a remarkably strong and clear early lead over the Seagate Firecuda 530 in terms of price, things take an immediate reverse in terms of performance between them. The reported maximum sequential Read and Write throughput on these drives from either brand is almost completely a win for Seagate and the Firecuda 530 in all but the 500GB. Now some of this credit can clearly be dedicated to that Phison E18 controller and 176 layer 3D NAND, but also the 2TB and 4TB SSDs feature double-sided cells (ie the chips are on either side) disturbing the read/write activity a bit. That NAND also provides some great durability (will touch on later) but the clear increase on the Firecuda 530 over the WD Black SN850, especially in the write activity as you rise through each capacity tier is remarkably impressive and only really rivalled by similar SSDs like the MSI Spatium, Sabrent Rocket Plus and Gigabyte Aorus Gen4 7000s.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7000MB 7000MB
Sequential Write (Max, MB/s), 128 KB 3000MB 4100MB
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5300MB
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6900MB 5100MB
4TB Model ZP4000GM3A013  
Sequential Read (Max, MB/s), 128 KB 7300MB N/A
Sequential Write (Max, MB/s), 128 KB 6900MB N/A

The WD Black NVMe PCIe 4×4 SSD certainly holds its own, maintaining that solid 7000MB/s write, but reported write speeds to seem a tad inconsistent at each GB/TB tier and fall behind significantly at each comparable Firecuda 530 drive (with the exception of the 500GB WDS500G1X0E model).

 

WD Black SN850 vs Seagate Firecuda 530 – Reported IOPS

A much more SSD specific measurement, IOPS, shows us a much more even playing field on the reported performance, with advantages and disadvantages on both sides. One immediate plus for both the WD Black SN850 and Seagate Firecuda 530 is that they both break the 1 Million IOPS threshold respectively at the 1 Terabyte tier, with even the lowly 500GB WD Black SN850 managing to hit the 1M Random Read IOPS, more than double the reported Random Read IOPS of the Firecuda SN850. However the Seagate Firecuda 530 then maintains the 1M IOPS breakpoint, first in Write at the 1TB level and then continues to provide 1,000,000 Read and Write on the Terabyte tiers – with the WD Black capping at 1M/700K on those same tiers.

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 400,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 700,000 680,000
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 800000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1000000 720,000
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Random Read (Max, IOPS), 4 KB QD32 1,000,000 1,000,000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 710,000
4TB Model ZP4000GM3A013  
Random Read (Max, IOPS), 4 KB QD32 1,000,000 N/A
Random Write (Max, IOPS), 4 KB QD32 1,000,000 N/A

Although IOPS are a tough and extremely relative-to-file’ method of measurement in real-world practice, the benefits of that E18 controller and NAND choice by Seagate here on the 530 are another win – though only JUST!

 

WD Black SN850 vs Seagate Firecuda 530 – Endurance & Durability

Unlike the other points in this comparison of the Firecuda 530 and SN850, the Endurance and Durability of an SSD is an area that is overlooked often enough that I wanted to take a moment to focus a little more on this – you can thank you years from now! The importance of SSD durability and endurance in 2021/2022 is actually pretty massive. Now that the devices we use all feature incredibly powerful processors, often cloud/network hybrid AI processes and graphical handling that will be instantly bottlenecked by traditional hard drives, SSDs are no longer just the ‘boot’ drive for our OS and are now the day to day working drive. This combined with SSD being used as caching and larger SSD capacities allowing suitable substitution for HDDs entirely means that the CONSTANT concern about SSDs lifespan and the durability of those NAND cells is now quite paramount. SSDs wear out – it’s as simple as that. The more you write, the more wear those individual NAND cells suffer – degrading performance over the years and inevitably leading to drive failure. Likewise, the smaller the drive, the greater likelihood that you will be writing, then rewriting, then rewriting, time and time again. The Seagate Firecuda 530 and WD Black SN850 are no exception and alongside massive research and development in better controllers and interfaces to improve performance, the way NAND is improved has led to SSDs lasting lover than ever before. However, SSDs and NAND are not built equally and there is actually quite a large difference in durability between the WD Black SN850 and the Seagate Firecuda 530. The Storage industry typically measures the predicted durability and endurance of an SSD as TBW, DWPD and MTBF. They are:

TBW = Terabytes Written, rated as the total number of terabytes that this SSD can have written to it in its warranty covered lifespan. So if the TBW was 300TB and the warranty is 5 years of coverage, that would mean that the drive can receive on average (with deleting/overwriting data each repeatedly) 60 Terabytes per year (or 5TB a month). After this point, the manufacturer highlights that durability, endurance and performance will decline. Often highlighted as an alternative to warranty length when gauging the predicted lifespan of a SSD.

DWPD = Drive Writes Per Day / Data Writes Per Day, this is a decimalized figure that represents what proportion of the capacity of an SSD (where 1.0 = 100% capacity) can be filled, erased and/or rewritten on a daily basis. This is provided using the warranty period and TBW figure. So, for example, if a 500GB drive has a 0.3DWPD rating, that is approx 150GB of data per day

MTBF = Mean Time Between Failure, which is the interval between one failure of an SSD and the next. MTBF is expressed in hours and most industrial SSDs are rated in the Millions of Hours. MTBF and MTTF (Mean Time to Failure) have largely become overlooked in recent years in favour of TBW and DWPD in SSDs, but are still stated on most Data Sheets.

So, now you know what those large Terbyte stats, hours and decimal point details are on the average SSD datasheet. So where do the Seagate Firecuda 530 and WD Black SN850 stand on this:

Brand/Series Seagate Firecuda 530

WD Black SN850

500GB Model ZP500GM3A013 WDS500G1X0E-00AFY0
Total Terabytes Written (TBW) 640TB 300TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
1TB Model ZP1000GM3A013 WDS100T1X0E-00AFY0
Total Terabytes Written (TBW) 1275TB 600TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
2TB Model ZP2000GM3A013 WDS200T1X0E-00AFY0
Total Terabytes Written (TBW) 2550TB 1200TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1,750,000
DWPD 0.7DWPD 0.3DWPD
4TB Model ZP4000GM3A013  
Total Terabytes Written (TBW) 5100TB N/A
Mean Time Between Failures (MTBF, hours) 1,800,000 N/A
DWPD 0.7DWPD N/A

And that is a very clear win for the Seagate Firecuda 530, with its significantly longer predicted lifespan for writing in its 5-year reported warranty period. Of course, if you are not going to be fully replacing the data on your drive on a regular basis, then you may not be concerned about the 0.7DWPD on the Firecuda 530 over the 0.3DWPD on the SN850, which is understandable. However, I would highlight that for Seagate to state that this SSD will maintain the reported performance benchmarks, as well as that durability is no small thing and although they cost more per GB/TB, you can see that this is where that extra money is seemingly going.

 

WD Black SN850 vs Seagate Firecuda 530 – Conclusion

Comparing two SSDs like the Seagate Firecuda 530 and the WD Black SN850, although very similar in base architecture, may seem a little mean-spirited. There is clearly more than half a year of difference in when these two SSD were introduced to the market and in terms of technology, that is pretty huge. However, now that more and more affordable motherboards are integrating PCIe Gen 4 in their systems, modern home gaming consoles like PS5 are featuring storage expansions for PCIe 4×4 m.2 and even NAS brands are slowly approaching PCIe 4 in their servers, I think more people are going to compare these two high-end drives. the WD Black SN850 is very well priced right now, providing PCIe 4.0 Speeds at the same price as many PCIe 3.0 drives, with blanket 7,000MB/s Read performance on all models, cracking the 1Million IOPS threshold even on smaller capacities and getting head start on the PCIe4x4 M.2 NVMe market. However, given the large number of 7,000MB/s Read and 6,500-6,800MB/s Write drives that have been unveiled in the last 3 months, the WD Black may have arrived the tiniest bit TOO early to the party, before manufacturers could properly catch up (blame Covid, blame shortages, blame trade wars, blame Chia, you name it, it happened!). the Seagate Firecuda 530 on the other hand has arrived at the time when the latest generation on the kit that desires this kind of storage has been re-tooled and means it is very well placed. That isn’t to say that the Firecuda 530 gets by on luck, no, the incredible durability increase, consistent high performance on R/W and even arriving with a 4TB model off the bat make it a very convincing choice to ultimately win in this comparison. The data recovery stuff (for the few people that may actually use it) is a cherry on the cake too.

Brand/Series Seagate Firecuda 530

WD Black SN850

Best Performance  
Best Endurance/Durability  
Best Price for TB  
Best Extras  
Best Value DRAW DRAW
Where To Buy

 

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

Sabrent Rocket 4 Plus SSD Review – Gamer Ready?

5 août 2021 à 16:00

Review of the Sabrent Rocket 4 Plus PCIe Gen 4 NVMe SSD

2021 has been a real boom year for super-fast SSD storage and one drive that has seemingly come out of nowhere to being EVERYWHERE is the Sabrent Rocket 4 Plus SSD. Although it could be argued that many areas of consumer technology has stagnated during the pandemic in terms of research and development, solid-state drives (SSDs) have gone from strength to strength and this year we have seen some of the biggest and fastest evolutions in this technology arrive in front of consumers worldwide, with few creating the same waves of surprise of the Sabrent Rocket 4 Plus! Sabrent, who was once better known for their enclosures and docking stations, a few years ago go to made big moves into their own range of affordable yet high performing PCIe4 SSD and their latest release has really thrown a cat among the bigger pigeons of Samsung, WD and Seagate. Arriving with the new cutting edge Phison 18 controller, Micron 96 layer 3D TLC NAND and PCIe Gen 4 x4 architecture, it is easy to see why this comparatively unheard of brand in SSD has got a lot to shout about. This has increased considerably now that the PS5 Storage Upgrade update is available to many users and the Sabrent Rocket 4 Plus is fully compatible, leading to many users comparing this drive against the Samsung 980 Pro, WD Black SN850 and Seagate Firecuda 530 for their big console upgrade! Today we want to talk about what you get for your money, what the Sabrent Rocket 4 Plus can do and what it can’t do. Let’s find out if the Sabrent Rocket 4 Plus deserves your data.

Sabrent Rocket 4 Plus SSD Review – Quick Conclusion

The Sabrent Rocket 4 Plus is not a drive that exaggerates on its spec sheets. With a number of new PCIe 4 M2 SSD arriving throughout 2021, you could easily assume that this SSD and its comparatively short pedigree in the solid-state drive industry when compared against giants like Samsung and Seagate, would get lost in the noise. I’m pleased to confirm that the Rocket 4 Plus is as high-performing as the brand states and now it has appeared on the PS5 SSD compatible storage list, is definitely worth checking out. It is by no means perfect, with reported IOPS noticeably lower than its competitors in the 980 Pro and Firecuda 530, as well as a noticeable price increase over the previous generation SSDs (somewhat unavoidable I guess), the Rocket 4 Plus may seem like something of a gamble for those who who have remained brand loyal with longer-established brands till now. However the performance of this SSD more than justified its existence and as long as you are prepared to overlook a rather awkward warranty registration hurdle, I can certainly recommend the Sabrent Rocket 4 Plus for PC Gamers, Video Editing Professionals and Playstation 5 Console Upgrades in 2021/2022.

PROs of the Sabrent Rocket 4 Plus CONs of the Sabrent Rocket 4 Plus
Genuinely Impressive Performance

One of the Affordable 7,000MB/s Drive on the Market

PS5 Compatibility Confirmed

Decent Amount of DDR4 Memory Cache

96 Layer 3D TLC NAND Hugely Beneficial

One of the Earliest Phison E18 SSDs

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) has dipped noticeably since it’s predecessor

Still Outperformed by the Firecuda 530

Warranty (1yr unless registered) seems needlessly complex

 

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ 1TB – $200 2TB – $469.99 4TB – $999.99
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L B27 3D NAND 96L
Capacity 1TB Single-Sided 2TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018

Sabrent Rocket 4 Plus SSD Review – Packaging

When Sabrent sent me the Rocket 4 Plus SSD, one of the first things that struck me was that the retail box is absolutely tiny. I know that should not come as a big surprise given how small formed factor m2 actually is, but even in 2021, these drive will typically arrived in boxes 3 or even for times this size and normally because they include additional manuals, as well as structured packaging that ensures that SSD is projected in transit. So the fact that this £1,000 SSD arrived in a box this small definitely gave me pause for thought.

However, my fears were immediately put to rest as soon as I opened the box and found that the Rocket 4 Plus SSD arrives in a rather smart looking metal hinged box casing. This rose gold packaging contained the SSD, surrounding pre-cut foam and installation guide. This was definitely a nice touch and certainly a step up in presentation when compared to do numerous other m2.SSD reviewed in the past.

Important – The photos for this review were taken AFTER the video review took place. I wanted to highlight this as during the video review I removed the adhesive labels on either side of the SSD in order to show the individual components onboard. This has resulted in the branded label and metallic front panel being less flush than it was when the drive was originally received and I take full responsibility for this. In particular, the metal panel was a great deal smoother before I got my grubby paws all over it.

The front logo display label on this SSD is actually quite a sturdy metallic panel that covers a number of key PCB components. This again is something I have not really seen any other brand do and although it is by no means industrial in quality, still quite impressed with this neat little design touch and I would argue assisted heat dissipation a tad too.

The other side is a little more mainstream and features A branded and model identifying sticker for this SSD. It is worth highlighting that removing either of these labels will result in the SSD potentially avoiding it warranty due to tampering, so although I am going to remove these labels 2 to give you a better look at the controller, NAND and other components, I do not recommend you do this.

As the model being reviewed today is the 4TB (4000GB) Rocket 4 Plus Sabrent SSD, it is worth highlighting that this is a double-sided SSD. This should definitely be a factor for those who wish to utilise additional keep thermal padding and heatsinks around this SSD in their PC, NAS or PS5 systems. Indeed, there is an additional high-quality sync available to ensure this Drive maintains optimal operational temperatures in your system for around £25. However this heatsink raises the height of the M.2 connector a couple of millimetres, so be aware (mainly PS5 owners)

The storage NAND, Phison E18 controller and DDR4 memory that this Drive arrives with as are well distributed on either side of this SSD and you are not left feeling like this is a cheap, sub-brand product. Let’s take a moment to have a closer look at the key SSD components that help this SSD break the proposed 7,000MB/s Sequential Read barrier.

Sabrent Rocket 4 Plus SSD Review – Hardware Specifications

Given the length of time that the Sabrent Rocket 4 Plus has been available (since March/April 2021), it is very surprising how similar the hardware it features compares to SSDs released in the last few months (such as the MSI M480, Gigabyte AORUS 7000s and Corsair MP600). iNDEED, Sabrent were one of the very first PCIe 4 M.2 SSDs on the market to take advantage of the Phison E18-PS5018 high-end controller. Alongside this, they are using noticeably denser NAND than many others and are even one of the very very M.2 PCIe SSD on the market right now at 2280 length available in 4TB (which most capping at 2TB). Let’s take a look at the architecture of the range:

SABRENT Rocket 4 +

SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND Micron B27 3D NAND 96L Micron B27 3D NAND 96L Micron B27 3D NAND 96L
Capacity 1TB Single Sided 2TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018
Memory 1GB 2GB 4GB
Size 2,280 2,280 2,280
Warranty 5yr 5yr 5yr

I know a lot of the above will seem needlessly technical, so below we can bring the most important considerations into sharper focus.

Hardware Focus of the Sabrent 4 Rocket Plus SSD Series

The first big, BIG thing to remember here is the controller, that Phison E18. An SSD is much like a microcosm version of a whole computer. The Controller is equivalent to the CPU, and Phison are one of the bigger 3rd party SSD controller manufacturers in the world! I say 3rd party, because some long-running storage brands like Samsung and WD have most of their development and hardware engineering ‘in-house’ and use their own branded controllers. Whereas some brands source some/all components for their SSDs from 3rd parties – which is not necessarily a bad thing for both them and the industry (there are pros and cons on either side). Phison has been at the cutting edge of this subject for years now and the E18 was first revealed last year in 2020, but due to the pandemic making storage trends unpredictable and semi-conductor shortages, most SSDs that utilized the Phison E18 eventually arrived in 2021. This controller is one of the biggest reasons that the Sabrent Rocket 4 Plus can actually make it’s promises about the 7,000MB/s+ Sequential Read (sequential data = big chunks of data). However, that is not the only reason.

The NAND on the Sabrent Rocket 4 Plus is where the data lives! SSDs (as you no doubt know) do not use moving parts as found in traditional hard drives and instead uses cells that are charged and data is read/written to them in this process. The quality of the NAND and the layers used will make a big difference to the durability and performance of an SSD and although the Sabrent Rocket 4 Plus does not provide the best SSD in the industry at this tier right now (that, once again, goes to the Seagate Firecuda 530 at 176 layer 3D TLC NAND), it is bigger than most, arriving at 96 Layers of 3D TLC NAND. Although the majority of modern PCIe M.2 SSD use 3D TLC NAND (avoid QLC NAND like the PLAGUE btw!), most are still at 64 layers or so, so this is a big jump up for the Sabrent SSD.

Much like the Controller on the Rocket 4 Plus being the ‘CPU’, it also has an area of memory. The Sabrent SSD uses DDR4 memory on board and this in conjunction with the SSD provides a massive body of data handling resources for getting your data moving through the SSD and out of the m.2 NVMe PCIe 4 interface. The amount of memory scales in conjunction with the 1TB, 2TB and 4TB SSD you use, but starts at an impressive 1GB of DDR4 at the lowest tier.

As mentioned, all three available capacities of the Sabrent Rocket 4 Plus arrive at 2280 in length. This is quite normal for the 1TB and 2TB versions, but the fact they were able to get 4TB on a 2280 SSD (and still not useless useful QLC NAND to make up the difference) is very impressive. The 2TB and 4TB models both use double-sided NAND distribution (so the cells are on either side), in order to space out the storage and allow even cooling, NAND wearing and performance. Do remember that this means you will need to provision heat dissipation on both sides of the NVMe M.2 SSD, using a metal surrounding heatsink OR thicker base level thermal heat pads.

Fianlly, there is the M.2 NVMe connection. Not all m.2 SSDs are created equal and although M.2 SATA and M.2 NVMe look similar, they provide massively different performance and connectivity. However, the Sabrent Rocket 4 Plus takes it one step further, by using a newer generation of PCIe Connectivity. In short, M.2 NVMe SSDs are connected to the host PC/Console system via PCIe protocol (think of those slots that you almost always use for your graphics cards, but a much, MUCH smaller connector). These allow much larger bandwidth (ie maximum speed) for the connected storage media, Much like regular PCIe slots, they have different versions (i.E PCIe Gen 1, 2, 3, 4, etc) and also a multiplying factor (x1, x2, x4, etc). Up until around 18 months ago, the best M.2 NVMes were M.2 PCIe Gen 3×4 (so a maximum 4,000MB/s possible). However, never generation SSD like the Sabrent Rocket 4 Plus use PCIe Gen 4×4 (a potential 8,000MB/s possible) and it is only now that SSD controllers and NAND production has reached a point where it can catch up and fully saturate (i.e fill) this connection.

Overall, you really cannot fault the hardware inside/onboard the Sabrent Rocket 4 Plus, as it is still (4 months after release) higher performing in sequential Read and Write than many other M.2 NVMe PCIe 4 SSDs released in that time. Before we go into the full testing, however, it is worth taking a moment to look closely at the reported performance benchmarks of the Sabrent Rocket 4 Plus, as although the performance seems stellar, there are areas such as IOPS and endurance when compared with its main rivals that are worth taking into consideration.

Sabrent Rocket 4 Plus SSD Review – Official Stats First

Before we conduct our own testing on this SSD, Let’s take a closer look at the reported specifications and benchmarks first. The Sabrent Rocket 4 Plus SSD arrives in three capacities at 1TB, 2TB and 4TB. That last one is quite impressive, especially given that very few brands of M.2 NVMe SSD at 2280 arrive above. The Prices currently are a little inconsistent (with each higher capacity tier actually having a higher price per GB – quite unusual) likely due to the hardware shortages, the Pandemic and Chia have affected SSD availability in the last 12 months. Below is a breakdown of how each rocket 4 plus SSD compares:

 

SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ $199 / £180 $469 / £419 $1099 / £999
Total Terabytes Written (TBW) 700TB 1400TB 3000TB
Mean Time Between Failures (MTBF, hours) 1600000 1600000 1600000
DWPD 0.4DWPD 0.4DWPD 0.4DWPD
Random Read (Max, IOPS), 4 KB QD32 350000 650000 650000
Random Write (Max, IOPS), 4 KB QD32 700000 700000 700000
Sequential Read (Max, MB/s), 128 KB 7000MB 7100MB 7100MB
Sequential Write (Max, MB/s), 128 KB 5500MB 6850MB 6850MB

There are clear throughput improvements as you rise through the capacity tiers (not unusual), as does the rated 4K IOPS. Though one area worth focusing on a little is that TBW (terabytes Written) and DWPD (Drive writes per day), as this drive is rated a pinch higher than the Samsung 980 Pro and WD Black SN850 in terms of NAND lifespan on daily writes, likely down to that Micron 96 Layer 3D TLC NAND used, rather than the 64 Layer used by competitors. This is an important point because Sabrent has previously been noted at having lower durability in earlier releases in their portfolio and this is a marked improvement.

However, despite the use of the Phison E18 controller and 96 layer NAND, the reported IOPS on each capacity is actually a noticeable degree lower than those reported by their competitors. Indeed, the Sabrent Rocket 4 Plus is the only SSD not to cross into the reported 1 Million IOPS mark, maxing out at 700k. This is still very impressive anyway, but it does make me wonder where the disparity stems from. Indeed, when you look at the bulk of PCIe 4×4 M.2 NVMe 1.4 SSD, that feature the E18 controller and 96L (or higher) on board, it really only leaves about 4 other SSDs in the market today that this can be compared against. The Corsair MP600, the MSI Spatium M480, the ADATA Gammix S70 and (current leader) the Seagate Firecuda 530. Of those, the only one that seemingly ‘out specs’ the Sabrent Rocket 4 Plus is the Seagate Firecuda 530. However, the Sabrent SSD has been available in the market for almost 5 months longer and has certainly embedded itself in the market in that time. Below is how these two drives compare:

SSD Family/Brand
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7000MB
Sequential Write (Max, MB/s), 128 KB 6000MB 5500MB
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7100MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Sequential Read (Max, MB/s), 128 KB 7300MB 7100MB
Sequential Write (Max, MB/s), 128 KB 6900MB 6850MB
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Random Read (Max, IOPS), 4 KB QD32 800000 350000
Random Write (Max, IOPS), 4 KB QD32 1000000 700000
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700000
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Random Read (Max, IOPS), 4 KB QD32 1,000,000 650000
Random Write (Max, IOPS), 4 KB QD32 1,000,000 700000
1TB Model ZP1000GM3A013 SB-RKT4P-1TB
Total Terabytes Written (TBW) 1275TB 700TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD
2TB Model ZP2000GM3A013 SB-RKT4P-2TB
Total Terabytes Written (TBW) 2550TB 1400TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD
4TB Model ZP4000GM3A013 SB-RKT4P-4TB
Total Terabytes Written (TBW) 5100TB 3000TB
Mean Time Between Failures (MTBF, hours) 1,800,000 1600000
DWPD 0.7DWPD 0.4DWPD

Yes, that is a LONG table, but you can immediately see that the Seagate Firecuda 530 raises the stakes on all of the key specifications. Although there are a number of micro reasons for this, the 176L NAND is the biggest factor here. Yes, that is why the Firecuda 530 commands the higher price tag. However, for many, the additional cost for higher durability they may never need, peak performance their core system will not reach and IOPS rating that their larger file handling will never utilize will mean that holding out for the Firecuda release is not in their interest. Both SSDs (on paper at this stage!) are fantastic examples of where consumer and prosumer SSDs are evolving towards. Let’s get the Sabrent Rocket 4 Plus on the test machine!

 

Testing the Sabrent Rock Plus 4TB m.2 PCIE4 NVMe SSD

The Sabrent Rocket 4 Plus 4TB was selected for this test and it was tested using multiple benchmark tools, from a cold boot, in the 2nd storage slot (i.e not the OS drive). Each test was conducted three times and an additional test was conducted on a Samsung 980 Pro 250GB and Seagate Firecuda 120 1TB SATA SSD in order to give then tests some perspective of scale (full details of this are shown in the YouTube Review of the Sabrent Rocket 4 Plus over on NASCompares):

Test Machine:

  • Windows 10 Pro Desktop System
  • Intel i5 11400 Rocket Lake – 6-Core 2.6/4.4Ghz
  • 16GB DDR4 2666MHz Memory
  • Intel B560M mATX Motherboard
  • OS Storage, Seagate Firecuda 120 SSD
  • Test SSD connected to Secondary PCIe Gen 4 M.2 Slot

 

ImportantIt became quite clear in early testing that my test machine, despite being quite high powered, was still not quite enough to get the truest speed out of this SSD. Factors such as my OS drive being a SATA drive, capture software, embedded graphics rather than GPU card resulting in the larger graphical file testing being fractionally capped, meaning that although this drive maxed at 6,980MB/s on my system, it definitely felt that it could have gone a pinch higher and broken into the 7,000MB/s with a more powerful system. That said, these higher benchmarks are generally allied to larger/sequential data (i.e BIG single files) and you should really focus on smaller random benchmarks. I wanted to add this disclaimer.

Using CrystalDisk, we got a good measure of the drive and verified that this PCIe Gen 4 x4 SSD was indeed using the 4×4 lane. Additionally, the temp averaged out around 41C between each test being conducted.

The first tests were conducted using the ATTO disk benchmark software. The first was a 256MB test file size and below is a breakdown of the transfer rates and IOPS. The Read and Write easily hit the 6,000MB/s+ area and hit 6,590MB/s Read and 6,250MB/s. However, the bottleneck of my system capped this in ATTO quite noticeably. Additionally, the IOPS benchmarks in ATTO for the Sabrent Rocket 4 Plus were good, but as expected, not breathtaking. Next, I repeated these tests with a 4GB test file.

The larger test file, unsurprisingly, produced higher results of sequential Read/Write at 6,600MB/s and 6,300MB/s respectively. The IOPS still maintained the same level as before.

Next, I switched to AS SSD for benchmarks. First up was 1GB file testing, both on sequential and 4K random:

The results were a pinch lower than I would have liked to see, so I then moved onto the 10G test file. These were noticeably better, both in transfers and 4K random:

The AS SSD tests were quite good, but not what I would have hoped from this SSD, so I moved on to the Crystal Disk Mark testing to see how well it would handle our lasts barrage of tests. The first test was the 1GB file testing, which measured both sequential and random, as well as the read and write IOPS. 1GB file test files provided:

Although this never crossed into the 7,000MBs mark (I suspect down to my test hardware), when I tested the 4GB test file routine, we saw increased benchmark scores 6,979MB/s Read and 6,741MB/s Write, as well as increased IOPS reported.

Ordinarily, I would introduce tests like BlackMagic and AJA into the mix here, but even a short burst of testing on an NVMe like this would over saturate the cache memory n board. Nevertheless, in the short term we still could ascertain the reported performance of 5,947/5,405MB/s on 16GB file testing:

Overall, the Sabrent Rocket 4 Plus was certainly able to provide some solid performance, as well as potentially exceed the test figures here on a more powerful machine. Given the reported Read and Write statistics that the brand has stated publically, I think there is enough evidence here to back up those claims.

Sabrent Rocket 4 Plus SSD Review – Conclusion

There is no denying that the Sabrent Rocket 4 Plus is an impressive SSD! Despite the wide range of solutions open to most SSD buyers, Sabrent has managed to do an incredible job of not only standing out from their contemporaries but also massively exceed them! Though it still lives marginally in the shadow of more expensive SSDs, like the Seagate Firecuda 3530, it still manages to massively outpace a number of big releases from Samsung and WD in 2021. With a consistent Performance of 6.9GB/s performance in our test area, it is no slouch and although the IOPS ratings are less than man recent releases, it makes up for it with a better price point in the lower tiers. Indeed, it is quite hard for most home and prosumer users to fault the Sabrent Rocket 4 Plus. The warranty procedure could certainly do with a change in-house and the oddly imbalanced price vs TB price point will hopefully level out when shortages level out, but overall I am quite pleased with what the Sabrent NVMe SSD bring to the table and recommend to home users, gamers and professionals who want a single drive that does exactly what it says on the tin

PROs of the Sabrent Rocket 4 Plus CONs of the Sabrent Rocket 4 Plus
Genuinely Impressive Performance

PS5 Compatible

One of the Affordable 7,000MB/s Drive on the Market

Decent Amount of DDR4 Memory Cache

96 Layer 3D TLC NAND Hugely Beneficial

One of the Earliest Phison E18 SSDs

Surpasses Samsung/WD PCIe 4 SSDs in some key areas

IOPS rating is noticeably lower than most competitors

Endurance (DWPD/TBW) has dipped noticeably since it’s predecessor

Still Outperformed by the Firecuda 530

Warranty (1yr unless registered) seems needlessly complex

 

SABRENT Rocket 4 + SB-RKT4P-1TB

SB-RKT4P-2TB

SB-RKT4P-4TB

Price in $ and $ 1TB – $200 2TB – $469.99 4TB – $999.99
PCIe Generation PCIe Gen 4 PCIe Gen 4 PCIe Gen 4
NVMe Rev NVMe 1.4 NVMe 1.4 NVMe 1.4
NAND B27 3D NAND 96L B27 3D NAND 96L B27 3D NAND 96L
Capacity 1TB Single Sided 4TB Double Sided 4TB Double Sided
Controller Phison E18-PS5018 Phison E18-PS5018 Phison E18-PS5018

 


Articles Get Updated Regularly - Get an alert every time something gets added to this page!


This description contains links to Amazon. These links will take you to some of the products mentioned in today's content. As an Amazon Associate, I earn from qualifying purchases. Visit the NASCompares Deal Finder to find the best place to buy this device in your region, based on Service, Support and Reputation - Just Search for your NAS Drive in the Box Below

 

SEARCH IN THE BOX BELOW FOR NAS DEALS

Need Advice on Data Storage from an Expert?

We want to keep the free advice on NASCompares FREE for as long as we can. Since this service started back in Jan '18, We have helped hundreds of users every month solve their storage woes, but we can only continue to do this with your support. So please do choose to buy at Amazon US and Amazon UK on the articles when buying to provide advert revenue support or to donate/support the site below. Finally, for free advice about your setup, just leave a message in the comments below here at NASCompares.com and we will get back to you. Need Help? Where possible (and where appropriate) please provide as much information about your requirements, as then I can arrange the best answer and solution to your needs. Do not worry about your e-mail address being required, it will NOT be used in a mailing list and will NOT be used in any way other than to respond to your enquiry. [contact-form-7] Terms and Conditions Alternatively, why not ask me on the ASK NASCompares forum, by clicking the button below. This is a community hub that serves as a place that I can answer your question, chew the fat, share new release information and even get corrections posted. I will always get around to answering ALL queries, but as a one-man operation, I cannot promise speed! So by sharing your query in the ASK NASCompares section below, you can get a better range of solutions and suggestions, alongside my own.  

❌